Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
* Wspomniani autorzy wnieśli do projektu równy wkład.
The sialidase assay is a simple technical approach that will elucidate novel molecular mechanism(s) of TLR sensors of microbial infections and involvement in inflammatory diseases at the receptor level on the cell surface of live macrophages.
Mammalian Toll-like receptors (TLRs) are a family of receptors that recognize pathogen-associated molecular patterns. Not only are TLRs crucial sensors of microbial (e.g., viruses, bacteria and parasite) infections, they also play an important role in the pathophysiology of infectious diseases, inflammatory diseases, and possibly in autoimmune diseases. Thus, the intensity and duration of TLR responses against infectious diseases must be tightly controlled. It follows that understanding the structural integrity of sensor receptors, their ligand interactions and signaling components is essential for subsequent immunological protection. It would also provide important opportunities for disease modification through sensor manipulation. Although the signaling pathways of TLR sensors are well characterized, the parameters controlling interactions between the sensors and their ligands still remain poorly defined. We have recently identified a novel mechanism of TLR activation by its natural ligand, which has not been previously observed 1,2. It suggests that ligand-induced TLR activation is tightly controlled by Neu1 sialidase activation. We have also reported that Neu1 tightly regulates neurotrophin receptors like TrkA and TrkB 3, which involve Neu1 and matrix metalloproteinase-9 (MMP-9) cross-talk in complex with the receptors 4. The sialidase assay has been initially use to find a novel ligand, thymoquinone, in the activation of Neu4 sialidase on the cell surface of macrophages, dendritic cells and fibroblast cells via GPCR Gαi proteins and MMP-9 5. For TLR receptors, our data indicate that Neu1 sialidase is already in complex with TLR-2, -3 and -4 receptors, and is induced upon ligand binding to either receptor. Activated Neu1 sialidase hydrolyzes sialyl α-2,3-linked β-galactosyl residues distant from ligand binding to remove steric hinderance to TLR-4 dimerization, MyD88/TLR4 complex recruitment, NFkB activation and pro-inflammatory cell responses. In a collaborative report, Neu1 sialidase has been shown to regulate phagocytosis in macrophage cells 6. Taken together, the sialidase assay has provided us with powerful insights to the molecular mechanisms of ligand-induced receptor activation. Although the precise relationship between Neu1 sialidase and the activation of TLR, Trk receptors has yet to be fully elucidated, it would represent a new or pioneering approach to cell regulation pathways.
1. Resurrecting Frozen Macrophage Cells
2. Plating Cells for the Sialidase Assay
3. Sialidase Assay
1. Making the Control
2. Making the Positive Test
3. Making the Positive Test together with Neuraminidase inhibitor Tamiflu
4. Determination of the Concentration of Inhibitor needed to Inhibit 50% of the Sialidase Activity (IC50)
5. Secrets to Success
6. Representative Results
See animated protocol of the sialidase assay with representative results in the attached Powerpoint file.
Using the newly developed assay to detect sialidase activity in live macrophage cells 2, we used this technology to detect sialidase activity in ligand-induced sialidase activity in live BMC-2 macrophage cells in a dose dependent manner as well in live DC-2.4 dendritic cells, HEK-TLR4/MD2, HEK293, SP1 mammary adenocarcinoma cells, human WT and 1140F01 and WG0544 type I sialidosis fibroblast cells. Neuraminidase inhibitors like Tamiflu (oseltamivir phosphate) inhibited thymoquinone-induced sialidase activity i...
S.R.A. and P.J. contributed equally as first authors.
Partial support by grants to MRS is from Natural Sciences and Engineering Research Council of Canada (NSERC), the Harry Botterell Foundation for Neuroscience Research, ARC, and the Garfield Kelly Cardiovascular Research and Development Fund. S.R.A. is a recipient of the Queen's University Research Award and the Robert J. Wilson Fellowship. P.J. is a recipient of the Queen's Graduate Award and the Robert J. Wilson Fellowship. A.G. and S.A. are recipients of the Queen's Graduate Award. S.F. was the recipient of the Ontario Graduate Scholarship in Science and Technology (OGSST). A.G. is the recipient of the Queen's Franklin Bracken Graduate Scholarship. S.A. is the recipient of the Queen's R.S. McLaughlin Graduate Scholarship.
Name | Company | Catalog Number | Comments |
DMEM | GIBCO, by Life Technologies | ||
4-MUNANA | Biosynth International, Inc | ||
Fetal calf serum | Hyclone | ||
DakoCytomation, Fluorescent Mounting Media | Dako | S3023 | 15 mL |
Tamiflu (Oseltamivir Phosphate) | Hoffmann-La Roche AG |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone