Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
The activity of single neurons from adult-aged mice can be studied by dissociating neurons from specific brain regions and using fluorescent membrane potential dye imaging. By testing responses to changes in glucose, this technique can be used to study the glucose sensitivity of adult ventromedial hypothalamic neurons.
Studies of neuronal activity are often performed using neurons from rodents less than 2 months of age due to the technical difficulties associated with increasing connective tissue and decreased neuronal viability that occur with age. Here, we describe a methodology for the dissociation of healthy hypothalamic neurons from adult-aged mice. The ability to study neurons from adult-aged mice allows the use of disease models that manifest at a later age and might be more developmentally accurate for certain studies. Fluorescence imaging of dissociated neurons can be used to study the activity of a population of neurons, as opposed to using electrophysiology to study a single neuron. This is particularly useful when studying a heterogeneous neuronal population in which the desired neuronal type is rare such as for hypothalamic glucose sensing neurons. We utilized membrane potential dye imaging of adult ventromedial hypothalamic neurons to study their responses to changes in extracellular glucose. Glucose sensing neurons are believed to play a role in central regulation of energy balance. The ability to study glucose sensing in adult rodents is particularly useful since the predominance of diseases related to dysfunctional energy balance (e.g. obesity) increase with age.
The brain regulates energy homeostasis through the neuroendocrine and autonomic nervous systems. The ventromedial hypothalamus (VMH), comprised of the ventromedial nucleus (VMN) and the arcuate nucleus (ARC), is important for the central regulation of energy homeostasis. Specialized glucose sensing neurons, within the VMH, link neuronal activity and peripheral glucose homeostasis1. There are two types of glucose sensing neurons; glucose excited (GE) neurons increase while glucose inhibited (GI) neurons decrease their activity as extracellular glucose increases. VMH glucose sensing neurons are generally studied using electrophysiology or calcium/membrane potential sensitive dye imaging.
The electrophysiological patch clamp technique is considered to be the gold standard in the study of ex vivo neuronal activity. In this technique, a glass micropipette electrode is attached to the cell membrane via a high resistance (GΩ) seal. Patch clamp electrodes allow real time recording of action potential frequency (current clamp) or ion conductance (voltage clamp) changes within a single neuron. While the patch clamp technique provides detailed information regarding changes in specific ion channel conductances, a major drawback is that only one neuron may observed at a time. It takes approximately 30-45 min of recording to verify that one is recording from a glucose sensing neuron before even beginning a specific experimental treatment. Moreover, GI and GE neurons comprise <20% of the total VMH neuronal population. Compounding this issue is the lack, in many cases, of an identifying cellular marker for these neurons. Thus, it is clear that despite providing valuable electrical information that other techniques cannot, patch clamp analysis is laborious, time consuming and low yield.
The use of fluorescence imaging of dissociated VMH neurons allows for the study of hundreds of neurons simultaneously. Calcium sensitive dyes can be used to measure intracellular calcium changes, which indirectly correlate to changes in neuronal activity. Membrane potential sensitive dyes are used to monitor membrane potential changes. Measuring cellular membrane potential is a more direct index of neuronal activity compared to changes in intracellular calcium levels. Furthermore, membrane potential dye (MPD) imaging potentially detects smaller changes in membrane potential where action potential firing is not altered and intracellular calcium levels might not change. Both of these fluorescence imaging techniques have been used to study VMH glucose sensing neurons from juvenile mice2-7. While results are less detailed than those obtained with patch clamp electrophysiology, the strength of imaging experiments is that they simultaneously evaluate a large population of cells which inevitably include a significant number of glucose sensing neurons. MPD imaging is particularly useful for studying GI neurons which are more uniformly localized throughout the entire VMH; thus providing an adequate population to study in the dissociated VMH (~15% GI). In contrast, while GE neurons are densely localized to the ventrolateral-VMN and cell poor region between the ARC and VMN, they do not represent a significant number of neurons within the VMH (<1% GE). Moreover, by studying isolated neurons, astrocytic and presynaptic effects are eliminated. This can be an advantage in studying first order neuron effects, as well as a disadvantage since physiological connections and processes are lost.
A limiting factor in both patch clamp electrophysiology and MPD/calcium dye imaging is the need to use younger animals (e.g. mice or rats <8 weeks of age). This is predominantly due to increased connective tissue in combination with decreased neuronal viability that occurs with age. In brain-slice electrophysiology studies, increased connective tissue makes it more difficult to visualize the neurons. Increased connective tissue also makes it harder to dissociate a large number of healthy neurons for imaging studies. Furthermore, neurons from younger animals survive longer during either patch clamp recording or imaging. However, the use of young mice can be a major limitation. Neuronal activity and/or responses to neurotransmitters or circulating nutrients change with age. For example, since energy balance is closely tied to reproductive status, the hypothalamic neurons regulating energy balance may respond differently in pre- vs postpubescent animals. Additionally, many diseases require long term treatment or do not manifest until adulthood. Prime examples of such diseases are dietary obesity or Type 2 Diabetes Mellitus. Since glucose sensing neurons are believed to play a role in these diseases we developed a methodology for successfully culturing healthy adult VMH neurons for use in MPD imaging experiments.
1. Animals
2. Preparation of Perfusion Solution, Coverslips, Glass Pipettes, and Media
3. Cardiac Perfusion
4. Brain Slicing and Dissection
5. Dissociation and Culture
6. Preparation for MPD Imaging
7. MPD Imaging
8. MPD Imaging Analysis
The precise dissection of the VMH away from other hypothalamic areas is important to obtain consistent results. The inclusion of other areas could dilute the VMH neuronal population, changing the % of depolarized neurons calculated. Furthermore, glucose sensing neurons have been identified in other hypothalamic regions, such as the lateral hypothalamus, which may differ functionally and mechanistically from VMH glucose sensing neurons. Figure 1 illustrates the correct anatomical locations for proper diss...
The key to being able to study activity of neurons from adult mice is the ability to dissociate healthy neurons. Dissociation of hypothalamic neurons from adult mice is more difficult at several key steps in the protocol compared to neurons from juvenile mice. We have overcome this problem in a number of ways. Making thick 500 µm brain slices minimizes mechanical damage to neurons compared to the usual 250-350 µm slices used for brain tissue from younger mice. However, thicker slices require greater attention t...
We have nothing to disclose.
NIH R01 DK55619, NIH R21 CA139063
Name | Company | Catalog Number | Comments |
Neurobasal-A Medium (Custom) | Invitrogen | 0050128DJ | custom made glucose free |
Hibernate-A Medium (Custom) | BrainBits | custom made glucose free | |
Penicillin streptomycin (20,000 U/ml) | Invitrogen | 15140 | other vendors acceptable |
Stericup vacuum filter units (0.22 μm) | Millipore | other vendors acceptable | |
25 mm Glass coverslips | Warner | #1 25mm round | |
18 mm Glass coverslips | Warner | #1 18mm round | |
GlutaMAX | Invitrogen | 35050 | |
B27 minus insulin (50x) | Invitrogen | 0050129SA | |
Razor blade | VWR | 55411 | |
Vibratome & cooling chamber | Vibratome | Series 1000 Sectioning system | |
Vibratome blades | Polysciences | 22370 | injector or double edge blades from other vendors acceptable |
Papain, suspension | Worthington | LS003124 | |
BSA, suitable for cell culture | Sigma | other vendor acceptable | |
DNAse, for cell culture | Invitrogen | other vendor acceptable | |
cloning cylinders, 6 mm x 8 mm | Bellco Glass | 2090-00608 | |
Membrane Potential Dye (blue) | Molecular Devices | R8042 | |
In-line heater | Warner | SF-28 | |
Syringe pumps | WPI | sp100i | other vendor acceptable |
Closed chamber | Warner | RC-43C | |
Polyethylene tubing | Warner | PE-90 | |
Metamorph | Molecular Devices | alternate image analysis software acceptable | |
Microscope | Olympus | BX61 WI |
used with 10X objective |
Camera | Photometrics | Cool Snap HQ | |
Narrow Cy3 Filter Set | Chroma | 41007a | |
Illumination System | Sutter Instruments | Lambda DG-4 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone