Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Assessment of the EEG mu rhythm provides a unique methodology for examining brain activity and when combined with behaviorally based assays, can be a powerful tool for elucidating aspects of social cognition, such as imitation, in clinical populations.
Electroencephalography (EEG) is an effective, efficient, and noninvasive method of assessing and recording brain activity. Given the excellent temporal resolution, EEG can be used to examine the neural response related to specific behaviors, states, or external stimuli. An example of this utility is the assessment of the mirror neuron system (MNS) in humans through the examination of the EEG mu rhythm. The EEG mu rhythm, oscillatory activity in the 8-12 Hz frequency range recorded from centrally located electrodes, is suppressed when an individual executes, or simply observes, goal directed actions. As such, it has been proposed to reflect activity of the MNS. It has been theorized that dysfunction in the mirror neuron system (MNS) plays a contributing role in the social deficits of autism spectrum disorder (ASD). The MNS can then be noninvasively examined in clinical populations by using EEG mu rhythm attenuation as an index for its activity. The described protocol provides an avenue to examine social cognitive functions theoretically linked to the MNS in individuals with typical and atypical development, such as ASD.
Electroencephalography (EEG) is an effective, efficient, and noninvasive method of assessing and recording brain activity. As neurons fire in the brain, the resulting voltage can be amplified, recorded, and graphically represented. The temporal resolution of EEG allows for the analysis of even brief changes in the oscillation patterns of the brain, as well as the analysis of the brain’s response to specific stimuli.
Despite being the oldest brain imaging technique, dating back to the late 19th century, EEG still has wide-ranging applicability. While functional magnetic resonance imaging (fMRI) has excellent spatial resolution, it has relatively poor temporal resolution. This represents a major limitation of fMRI assessment given the incredible speed at which processes occur in the brain. EEG has the ability to assess electrical brain activity at the millisecond level, providing potential insight into the phases of the brain’s processing.
Evolving technologies have also expanded the applicability of EEG. An increase in the density of recording systems has allowed for the development of source localization techniques, mitigating some of EEG’s limitations regarding spatial resolution. Additionally, modern systems have reduced the individual participant set-up time significantly, allowing for the assessment of previously unavailable populations, such as infant and clinical samples1-3,28-30.
Given the excellent temporal resolution, EEG can be used to examine the neural response related to specific behaviors, states, or external stimuli. An example of this utility is the assessment of the mirror neuron system (MNS) in humans. Mirror neurons were originally identified in monkeys using single neuron recording4, evidencing a group of neurons that responded to both the execution and observation of motor actions. This direct recording method of placing electrodes in the brain is rarely utilized in humans, and only in dire clinical cases. EEG has provided a method for assessing the MNS by monitoring the EEG mu rhythm. This oscillation pattern in the 8-12 Hz range has been shown to attenuate EEG power in response to the execution and observation of motor actions, similar to the activation pattern observed in monkeys5-7. Similarly, stimulation of putative MNS brain regions through Transcranial Magnetic Stimulation (e.g. the inferior frontal gyrus) abolishes EEG mu rhythm8 and EEG mu rhythm suppression correlates with BOLD signals from fMRI in putative mirror neuron regions within subjects9, providing additional support that this rhythm indexes, at least in part, MNS activity. Assessment of the EEG mu rhythm has allowed for a noninvasive assessment of mirror neuron activity in humans.
EEG provides a unique methodology for examining brain activity and when combined with behaviorally based assays, it can be a powerful tool for elucidating aspects of social cognition, such as imitation, in clinical populations. Further, the applicability of EEG for use with populations with cognitive or language impairments allows for insight into abilities of individuals for whom other imaging techniques or behavioral paradigms may be less successfully utilize. The described protocol provides an avenue to examine social cognitive functions theoretically linked to the mirror neuron system in individuals with typical and atypical development, such as Autism Spectrum Disorder.
The following protocol adheres to the guidelines of the University of Washington institutional review board.
1. Electrophysiological Assessment
2. Sample Characterization
Typical adults, children and infants have consistently demonstrated mu rhythm during both the execution and observation of actions across a variety of paradigms and stimuli5,14-30. Attenuation in this frequency band is consistently localized across central electrodes (Figure 3) indicating that this is not reduction of alpha power which is recorded at other scalp regions. Similarly, attenuation in this frequency during the observation of movement is limited to the observat...
The successful acquisition, processing, and analysis of electrophysiological data related to the mu rhythm and the application to clinical populations requires 1) the application of EEG methodological tools, 2) careful artifact detection and data reduction, 3) accurate identification of the mu rhythm, and 4) accurate characterization of the clinical population and identification of appropriate control groups.
Appropriate EEG methodology requires properly functionin...
The authors declare no competing financial interests.
This work was supported by a grant from the Simons Foundation (SFARI #89638 to RB).
Name | Company | Catalog Number | Comments |
Geodesic EEG System | EGI | N/A | Any EEG system, not only EGI based systems, is applicable for the described study |
MATLAB software | MATLAB | N/A | Any mathematical, statistical software that can work with matrices is applicable |
Netstation software | EGI | N/A | Any EEG acquisition software is applicable for the described study |
Manipulandum | custom | N/A | Any object that is co-registered with data acquisition software to signal a successful grasp |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone