Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Efficient generation of nonlinear phenomena related to third order optical non-linear susceptibility Χ(3) interactions in triply resonant silica microspheres is presented in this paper. The interactions here reported are: Stimulated Raman Scattering (SRS), and four wave mixing processes comprising Stimulated Anti-stokes Raman Scattering (SARS).
Dielectric microspheres can confine light and sound for a length of time through high quality factor whispering gallery modes (WGM). Glass microspheres can be thought as a store of energy with a huge variety of applications: compact laser sources, highly sensitive biochemical sensors and nonlinear phenomena. A protocol for the fabrication of both the microspheres and coupling system is given. The couplers described here are tapered fibers. Efficient generation of nonlinear phenomena related to third order optical non-linear susceptibility Χ(3) interactions in triply resonant silica microspheres is presented in this paper. The interactions here reported are: Stimulated Raman Scattering (SRS), and four wave mixing processes comprising Stimulated Anti-stokes Raman Scattering (SARS). A proof of the cavity-enhanced phenomenon is given by the lack of correlation among the pump, signal and idler: a resonant mode has to exist in order to obtain the pair of signal and idler. In the case of hyperparametric oscillations (four wave mixing and stimulated anti-stokes Raman scattering), the modes must fulfill the energy and momentum conservation and, last but not least, have a good spatial overlap.
Whispering gallery mode resonators (WGMR) show two unique properties, a long photon lifetime and small mode volume that allow the reduction of the threshold of nonlinear phenomena1-3. Whispering gallery modes are optical modes that are confined at the dielectric air interface by total internal reflection. The small mode volume is due to the high spatial confinement whereas the temporal confinement is related to the quality factor Q of the cavity. WGMR can have different geometries and there are different fabrication techniques suitable for obtaining high Q resonators4-6 Surface tension cavities such as silica microspheres exhibit near atomic scale roughness, which translates in high quality factors. Both types of confinement significantly reduce the threshold for nonlinear effects due to the strong energy buildup inside the WGMR. It also allows continuous wave (CW) nonlinear optics.
WGMR can be described using the quantum numbers n, l, m and their polarization state, in a strong analogy with the hydrogen atom7. The spherical symmetry allows the separation in radial and angular dependencies. The radial solution is given by Bessel functions, the angular ones by the spherical harmonics8.
Silica glass is centrosymmetric and, therefore, second order phenomena related to Χ(2) interactions are forbidden. At the surface of the microsphere, the inversion of symmetry is broken and Χ(2) phenomena can be observed1. However, phase matching conditions for second-order frequency generation are more problematic than the equivalent in third order frequency generation, especially because the wavelengths involved are quite different and the role of dispersion can be quite important. The second order interactions are extremely weak. The generated power scales with Q3 whereas for a third order interaction the generated power scales with Q4.9 For that reason, the focus of this work is third order optical non-linear susceptibility Χ(3) interactions such as Stimulated Raman Scattering (SRS) and Stimulated Antistokes Raman Scattering (SARS), being SARS the less explored interaction10,11. Chang12 and Campillo13 pioneered the studies of nonlinear phenomena using droplets of highly nonlinear materials as WGMR but the pump laser was pulsed instead of CW. Silica microspheres14,10 and microtoroids15 provided more stable and robust platforms compared to the micro-droplets, gaining much of the attention in the last decades. Particularly, silica microspheres are very easy to fabricate and handle.
SRS is a pure gain process that can be easily achieved in silica WGMR14,15, since reaching a threshold is enough. In this case, the high circulating intensity inside the WGMR guarantees Raman lasing, but for parametric oscillations is not sufficient. In these cases, efficient oscillations require phase and mode matching, energy and momentum conservation law and a good spatial overlap of all resonant modes to be fulfilled16-18. This is the case for SARS and FWM in general.
1. Fabrication of Ultrahigh Factor of Quality Microspheres
2. Drawing a Tapered Fiber
Note: The tapered fiber is also needed for coupling light into the microresonators. The size of the microsphere will determine the waist of the taper. For sphere diameters larger than 125 μm, the diameter of the taper can be of about 3-4 μm. For smaller ones, the diameter of the taper should be smaller, say 1-2 μm. In order to keep losses at low level and to have just one mode in the tapered section (the fundamental one), the tapering has to be adiabatic (gradual transition from thick to thin diameter). The typical total length of the adiabatic tapered section is about 2 cm. Figure 2 shows the home-made device for pulling the fiber and Figure 3A shows a microphoto of a typical waist zone.
3. Fabrication of Small Microspheres
Note: Small microspheres with diameters below the size of a standard fiber clad require previous tapering of the fiber. The minimum diameter obtained using this method is about 25 μm.
4. Coupling Light into the Microsphere
Note: We use the taper to couple light into the microsphere and measure the resonances of the microresonator.
5. Stimulated Raman Scattering
The Q factors of the microspheres fabricated following the protocol described above are in excess of 108 (Figure 5) for large diameters (>200 μm) and in excess of 106 for small diameters (< 50 μm). Resonance contrast above 95% (close to critical coupling) can be easily observed. For high circulating intensities, the following nonlinear effects in the infrared region can be observed: stimulated Raman scattering (SRS), cascaded SRS
Microspheres are compact and efficient nonlinear oscillators and they are very easy to fabricate and handle. Tapered fibers can be used for coupling and extracting the light in/from the resonator. Resonance contrast up to 95% and Q factors of about 3 x 108 can be obtained.
The main limitation of these fabrication techniques is mass production and integration. Cleanliness of the fibers is critical to both microspheres and tapers, and so is humidity. Both devices must be kept in dry e...
The authors declare that they have no competing financial interests. D.F. is a PhD student at the University of Parma.
Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi
Ente Cassa di Risparmio di Firenze (No. 2014.0770A2202.8861)
Name | Company | Catalog Number | Comments |
Optical Fiber | Corning | SMF28 | |
Fiber coating stripper | Thorlabs | T06S13 | Available from other vendors as well |
Fiber cleaver | Fitel | S325A | Available from other vendors as well |
Fusion splicer | Furakawa | S177A-1R | Available from other vendors as well |
Butane and Oxygen Gas | n/a | any vendor | |
Microscope tube | Navitar | Zoom 6000 | Modular Kit |
CCD camera | n/a | N/A | any will fit |
Monitor | n/a | N/A | any monitor is valid |
3-Axis Stage | PI Instruments, Thorlabs, Melles | ||
Assorted posts and mounts | Thorlabs | Available from other vendors as well | |
Polarization control | Thorlabs | FPC030 | Available from other vendors as well |
Attenuator | Throlabs | VOA50 | |
Photodiode | Thorlabs | PDA400 | discontinued, replaced by PDA10CS-EC |
Oscilloscope | Tektronix | DPO7104 | |
Optical spectrum analyzer | Ando | AQ6317B | |
Erbium Doped Fiber Amplifier | IPG Photonics | EAD-2K-C | |
Tunable Laser | Yenista | TUNICS |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone