Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Speckle tracking echocardiography is an emerging diagnostic imaging technique for the quantitative assessment of global and regional myocardial performance. Standard view echocardiographic motion images are recorded and deformation parameters are subsequently measured by automated continuous frame-by-frame tracking and motion analysis of speckles within the B-mode images of the myocardium.
The value of conventional echocardiography is limited by differences in inter-individual image interpretation and therefore largely dependent on the examiners' expertise. Speckle tracking Echocardiography (STE) is a promising but technically challenging method that can be used to quantitatively assess regional and global systolic and diastolic myocardial performance. Myocardial strain and strain rate can be measured in all three dimensions — radial, circumferential, longitudinal — of myocardial deformation. Standard cross-sectional two-dimensional B-mode images are recorded and subsequently postprocessed by automated continuous frame-by-frame tracking and motion analysis of speckles within the myocardium. Images are recorded as digital loops and synchronized to a 3-lead EKG for timing purposes. Longitudinal deformation is assessed in the apical 4-, 3-, and 2-chamber views. Circumferential and radial deformation are measured in the parasternal short axis plane.
Optimal image quality and accurate tissue tracking are paramount for the correct determination of myocardial performance parameters. Utilizing transthoracic STE in a healthy volunteer, the present article is a detailed outline of the essential steps and potential pitfalls of quantitative echocardiographic myocardial deformation analysis.
Scientific and clinical scenarios in cardiovascular medicine are more and more addressed by continuous variables and cutoff values rather than simplistic "yes or no" algorithms. Imaging techniques have evolved to be able to assess cardiac function in ever increasing detail. Speckle tracking echocardiography (STE) is an emerging diagnostic tool for the quantitative evaluation of myocardial performance. While conventional echocardiography is limited by subjective image interpretation and a strong dependence on the individual examiner's expertise, STE has been introduced as a reproducible and more objective method to quantify global and regional systolic and diastolic function1,2.
Left ventricular (LV) myocardial deformation — longitudinal and circumferential shortening as well as radial thickening in systole and vice versa in diastole — can be described measuring the parameters strain (ε) and strain rate (SR). ε is a dimensionless percent change in myocardial length. SR is a time derivate of ε3. These important indices of myocardial function have been shown to be able to identify myocardial ischemia4, predict response to cardiac resynchronization therapy5 and to detect subclinical myocardial dysfunction while conventional echocardiographic parameters still remain normal6. In a systematic meta-analysis, global longitudinal ε, the most frequently used quantitative LV systolic function parameter, has been shown to have superior prognostic value for the prediction of major adverse cardiac events then LV ejection fraction (EF), the current gold standard for the assessment of LV systolic function7. Even very subtle alterations such as the effect of short term metabolic changes on myocardial mechanics in asymptomatic patients can be detected utilizing STE8.
Technically, STE uses greyscale 2D or 3D B-mode motion images recorded in standard echocardiography views. Several consecutive cardiac cycles are recorded in apical 4-, 3- and 2-chamber views to measure longitudinal deformation and in the parasternal short axis view for circumferential and radial deformation9. Moreover, by capturing the short axis view at the level of the mitral valve, the papillary muscles and the apex, LV torsion can be assessed3. Subsequently to image acquisition and storage as digital loops, myocardial deformation is measured on an off-line work station or on the ultrasound device itself. The software detects unique myocardial pixel patterns in the recorded greyscale images, so-called "speckles" and traces them throughout the analyzed cardiac cycle. Vectors are measured and deformation parameters are subsequently calculated. This way regional and global myocardial deformation can be assessed in systole and diastole for both the left and right ventricle and atrium10.
The protocol content has been ethically approved by the Witten/Herdecke University Ethics Committee.
1. Technical Requirements
2. Recording of Echocardiographic Digital Loops
3. Postprocessing Analysis
NOTE: This part of the protocol includes the evaluation and interpretation of the recorded echocardiographic images. It does not require the patient to be present and can be performed at any time following the previous part of the procedure.
The principle parameters for the quantitative assessment of myocardial performance are ε and SR. Technically, all cardiac chambers can be analyzed using STE. However, since speckle tracking methodology has been mostly used to study the LV, the focus of this article is on LV myocardial mechanics. Generally, longitudinal ε and SR are the most commonly assessed LV deformation parameters. Longitudinal ε and SR describe systolic shortening (and diastolic lengthening) of the myoc...
Significance of the technique with respect to alternative methods
The current gold standard for the echocardiographic assessment of LV systolic function is the LV ejection fraction (EF)13. However, determination of EF is based on a simplistic approach that is closely correlated to the radial component of myocardial contraction but does not take into consideration the important longitudinal and circumferential planes. Hence, EF oversimplifies the three-dimensional co...
The authors have nothing to disclose.
The authors thank the echocardiographic study subject for volunteering in the video as well as Witten/Herdecke University and HELIOS Research Center (HRC-ID 000416 assigned to Kai O. Hensel) for funding.
Name | Company | Catalog Number | Comments |
Phillips iE33 ultrasound system | Philips Healthcare | http://www.umiultrasound.com/ultrasound-machine/philips/ie33 | |
S5-1 broadband sector array transducer | Philips Healthcare | 5-1 MHz, http://www.usa.philips.com/healthcare/product/HC989605412081/s5-1 | |
QLAB Advanced Quantification Software Version 10.5 | Philips Healthcare | Q-App: Automated Cardiac Motion Quantification (aCMQ), www.philips.com/QLAB-cardiology | |
Xcelera R3.3L1 (Version 3.3.1.1103) | Philips Healthcare | http://www.usa.philips.com/healthcare/product/HC830038/xcelera-r41-cardiology-information-management-system |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone