Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
In this paper, we present a protocol to selectively deposit organic materials on textiles, which allows for the direct integration of organic electronic devices with wearables. The fabricated devices can be fully integrated in textiles, respecting their mechanical appearance and enabling sensing capabilities.
Today, wearable electronics devices combine a large variety of functional, stretchable, and flexible technologies. However, in many cases, these devices cannot be worn under everyday conditions. Therefore, textiles are commonly considered the best substrate to accommodate electronic devices in wearable use. In this paper, we describe how to selectively pattern organic electroactive materials on textiles from a solution in an easy and scalable manner. This versatile deposition technique enables the fabrication of wearable organic electronic devices on clothes.
The field of wearable electronics is a fast-growing market expected to be worth 50 billion euros in 2025, over three times the current market. The main challenge facing current wearable devices is that intrusive solid electronic attachments limit the usage of established devices in wearable systems. Using textiles that are already present in everyday life is a very attractive and straightforward approach to avoid this limitation. Due to its elastic capability, some parts of the clothing that we wear are naturally in tight contact with the skin. Many examples of smart clothes available on the market today are based on thin, plastic displays, keyboards, and light source devices embedded in textiles, linking electronics with humans in a fashionable way1. In sport practice, health monitoring relies on textile electrodes, which offer comfortable alternatives to commonly used adhesive electrodes and metal wristbands. Here, conductive fibers are directly integrated with stretchy fabrics to prevent skin irritation and other discomforts during extended wear. Additionally, textiles offer a number of opportunities to integrate curvature sensors to capture motion2, to integrate shear sensors for the development of functional robotic actuators3, and certainly to integrate biosensors through the detection of an analyte in sweat4.
Modern wearable technology relies on carbon-based semiconductor materials that deliver electronic devices with unique properties. The "soft" nature of organics offers better mechanical properties for interfacing with the human body compared to traditional solid-state electronics. This mechanical compatibility, paired with mechanically flexible substrates, enables the use of non-planar form factors in devices such as textiles. The use of organics is also relevant in life sciences due to their mixed electronic and ionic conductivity5. Besides, organic semiconducting and optoelectronic materials empower a large variety of functional devices with display, transistor, logic, and power capabilities6,7,8,9. The main difficulty in the fabrication of such organic devices is the controlled deposition of functional materials on the non-planar surfaces of textiles. Conventional microfabrication techniques are primarily limited by the incompatibility of the deposition process with the structural dimensionality of textile substrates.
Here, we describe a simple and scalable fabrication protocol that allows for the selective deposition of conducting polymers on structured textiles. The presented process enables the fabrication of wearable and conformal electronic devices. The approach is based on the patterning of the commercially available conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and an elastomeric stencil material polydimethylsiloxane (PDMS) on textile. This combination allows for the efficient confinement of the aqueous PEDOT:PSS solution, as well as for the retention of the soft and stretchable properties of textiles. This simple and reliable fabrication method paves the way for the fabrication of a variety of electronic devices directly on textiles in a cost-efficient and industrially scalable manner.
1. Patterning Conducting Polymers on Textile
2. Organic Device Fabrication
NOTE: The protocol in Section 1 describes the selective deposition of conducting materials on textiles. The following sections will describe the additional steps needed to fabricate organic devices, like stretch sensors, OECT transistors, cutaneous electrodes, and capacitive sensors.
Traditional methods for applying colors or patterns to textiles rely on removable masking layers to allow the selective deposition of dyes. In Figure 1, we show the adaptation of such an approach to the patterning of PEDOT:PSS electrodes on textiles. As a masking layer, we used hydrophobic polydimethylsiloxane, which can restrain the non-controllable diffusion of the aqueous PEDOT:PSS solution. Moreover, the softness and stretchability of knitted and woven textiles can be...
The patterning of conducting materials is one of the first steps in the fabrication of functional electronic devices. This can become challenging, as the fabrication process needs to take into account the chemical and physical properties of such materials, and the process flow needs to consider the material cross-compatibility between the fabrication steps. In the microfabrication of organic electronic devices, these two aspects are even more significant due to the highly reactive nature of organics. Today, however, orga...
The authors have nothing to disclose.
The authors would like to acknowledge the BPI PIAVE AUTONOTEX grant for the financial support.
Name | Company | Catalog Number | Comments |
SYLGARD 184, Silicone elastomer kit (Base and Curing agent) | Dow Corning | PDMS elastomer | |
The conducting polymer formulation | |||
CleviosTM PH 1000 PEDOT:PSS | Heraeus | Conductive polymer | |
Ethylene glycol | Sigma-Aldrich | 03750-250ML | Solvent (EG), CAS: 107-21-1 |
3-methacryloxypropyltrimethoxysilane | Sigma-Aldrich | M6514 | Cros linker (GOPs), CAS: 2530-85-0 |
4-dodecylbenzenesulfonic acid | Sigma-Aldrich | 44198 | DBSA; CAS: 121-65-3 |
The ionic liquid gel | |||
UV lamp DFE 2340 | C.I.F/ ATHELEC | DP134 | UV-365 nm |
1-Ethyl-3-methylimidazolium ethyl sulfate | Sigma-Aldrich | 51682-100G-F | Ionic Liquid (IL), CAS: 342573-75-5 |
Poly(ethylene glycol) diacrylate | Sigma-Aldrich | 455008-100ML | Mn 700, CAS: 26570-48-9 |
2-Hydroxy-2-methylpropiophenon | Sigma-Aldrich | 405655-50ML | Phot Initiator (PI), CAS: 7473-98-5 |
The textile fabric | VWR | Spec-Wipe 7 Wipers | 100% interlock knit polyester fabric |
The polyimide film | DuPont | HN100 | Polyimide film with 125 µm thickness |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone