Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
We demonstrate an all-electronic method to observe nanosecond-resolved charge dynamics of dopant atoms in silicon with a scanning tunneling microscope.
The miniaturization of semiconductor devices to scales where small numbers of dopants can control device properties requires the development of new techniques capable of characterizing their dynamics. Investigating single dopants requires sub-nanometer spatial resolution, which motivates the use of scanning tunneling microscopy (STM). However, conventional STM is limited to millisecond temporal resolution. Several methods have been developed to overcome this shortcoming, including all-electronic time-resolved STM, which is used in this study to examine dopant dynamics in silicon with nanosecond resolution. The methods presented here are widely accessible and allow for local measurement of a wide variety of dynamics at the atomic scale. A novel time-resolved scanning tunneling spectroscopy technique is presented and used to efficiently search for dynamics.
Scanning tunneling microscopy (STM) has become the premier tool in nanoscience for its ability to resolve atomic-scale topography and electronic structure. One limitation of conventional STM, however, is that its temporal resolution is restricted to the millisecond timescale because of the limited bandwidth of the current preamplifier1. It has long been a goal to extend STM's temporal resolution to the scales on which atomic processes commonly occur. The pioneering work in time-resolved scanning tunneling microscopy (TR-STM) by Freeman et. al.1 utilized photoconductive switches and microstrip transmission lines patterned on the sample to transmit picosecond voltage pulses to the tunnel junction. This junction-mixing technique has been used to achieve simultaneous resolutions of 1 nm and 20 ps2, but it has never been widely adopted due to the requirement of using specialized sample structures. Fortunately, the fundamental insight gained from these works can be generalized to many time-resolved techniques; even though the bandwidth of the STM's circuitry is limited to several kilohertz, the non-linear I(V) response in STM allows faster dynamics to be probed by measuring the average tunnel current obtained over many pump-probe cycles. In the intervening years, many approaches have been explored, the most popular of which are briefly reviewed below.
Shaken-pulse-pair-excited (SPPX) STM takes advantage of the advancements in ultrafast pulsed laser technologies to achieve sub-picosecond resolution by directly illuminating the tunnel junction and exciting carriers in the sample3. Incident laser light creates free carriers that transiently enhance conduction, and modulation of the delay between the pump and probe (td) allows dI/dtd to be measured with a lock-in amplifier. Because the delay between the pump and probe is modulated rather than the laser's intensity, as in many other optical approaches, SPPX-STM avoids photo illumination-induced thermal expansion of the tip3. More recent extensions of this approach have extended the timescales over which SPPX-STM can be used to investigate dynamics by utilizing pulse-picking techniques to increase the range of pump-probe delay times4. Importantly, this recent development also provides the ability to measure I(td) curves directly rather than via numerical integration. Recent applications of SPPX-STM have included the study of carrier recombination in single-(Mn, Fe)/GaAs(110) structures5 and donor dynamics in GaAs6. Applications of SPPX-STM face some restrictions. The signal SPPX-STM measures depends on free carriers excited by the optical pulses and is best suited to semiconductors. Additionally, although the tunneling current is localized to the tip, because a large area is excited by the optical pulses, the signal is a convolution of the local properties and material transport. Finally, the bias at the junction is fixed at the measurement timescale so that the dynamics under study must be photoinduced.
A more recent optical technique, terahertz STM (THz-STM), couples free-space THz pulses focused on the junction to the STM tip. Unlike in SPPX-STM, the coupled pulses behave as fast voltage pulses allowing for the investigation of electronically driven excitations with sub-picosecond resolution7. Interestingly, the rectified current generated from the THz pulses results in extreme peak current densities not accessible by conventional STM8,9. The technique has been used recently to study hot electrons in Si(111)-(7x7)9 and image the vibration of a single pentacene molecule10. THz-pulses naturally couple to the tip, however, the necessity to integrate a THz source to an STM experiment is likely to be challenging to many experimenters. This motivates the development of other widely applicable and easily implementable techniques.
In 2010, Loth et al.11 developed an all-electronic technique where nanosecond voltage pulses applied on top of a DC offset electronically pump and probe the system11. The introduction of this technique offered a critical demonstration of unambiguous and practical applications of time-resolved STM to measure previously unobserved physics. Although it is not as fast as junction mixing STM, which preceded it, applying microwave pulses to the STM tip permits arbitrary samples to be investigated. This technique does not require any complicated optical methodologies or optical access to the STM junction. This makes it the easiest technique to adapt to low temperature STMs. The first demonstration of these techniques was applied to the study of spin-dynamics where a spin-polarized STM was used to measure the relaxation dynamics of spin-states excited by the pump pulses11. Until recently, its application remained limited to magnetic adatom systems12,13,14 but has since been extended to the study of carrier capture rate from a discrete mid-gap state15 and charge dynamics of single arsenic dopants in silicon15,16. The latter study is the focus of this work.
Studies on the properties of single dopants in semiconductors have recently attracted significant attention because complementary metal oxide semiconductor (CMOS) devices are now entering the regime where single dopants can affect device properties17. In addition, several studies have demonstrated that single dopants can serve as the fundamental component of future devices, for example as qubits for quantum computation18 and quantum memory19, and as single atom transistors20,15. Future devices may also incorporate other atomic-scale defects, such as the silicon dangling bond (DB) which can be patterned with atomic precision with STM lithography21. To this end, DBs have been proposed as charge qubits22, quantum dots for quantum cellular automata architectures23,24, and atomic wires25,26 and have been patterned to create quantum Hamiltonian logic gates27 and artificial molecules28,29. Moving forward, devices may incorporate both single dopants and DBs. This is an attractive strategy because DBs are surface defects that can easily be characterized with STM and used as a handle to characterize single dopant devices. As an example of this strategy, DBs are used in this work as charge sensors to infer the charging dynamics of near-surface dopants. These dynamics are captured with the use of an all-electronic approach to TR-STM that is adapted from the techniques developed by Loth et al.11
Measurements are performed on selected DBs on a hydrogen terminated Si(100)-(2x1) surface. A dopant depletion region extending approximately 60 nm below the surface, created via thermal treatment of the crystal30, decouples the DB and the few remaining near-surface dopants from the bulk bands. STM studies of DBs have found that their conductance is dependent on global sample parameters, such as the concentration of dopants and the temperature, but individual DBs also show strong variations depending on their local environment16. During an STM measurement over a single DB, the current flow is governed by the rate at which electrons can tunnel from the bulk to the DB (Γbulk) and from the DB to the tip (Γtip) (Figure 1). However, because the conduction of the DB is sensitive to its local environment, the charge state of nearby dopants influences Γbulk (Figure 1B), which can be inferred by monitoring the DB's conductance. As a result, the conductance of a DB can be used to sense the charge states of nearby dopants, and can be used to determine the rates at which the dopants are supplied electrons from the bulk (ΓLH) and lose them to the STM tip (ΓHL). To resolve these dynamics, TR-STS is performed around the threshold voltages (Vthr) at which the tip induces ionization of near-surface dopants. The role of the pump and probe pulses is the same in the three time-resolved experimental techniques presented here. The pump transiently brings the bias level from below to above Vthr, which induces dopant ionization. This increases the conductance of the DB, which is sampled by the probe pulse which follows at a lower bias.
The techniques described in this paper will benefit those wishing to characterize dynamics occurring on the millisecond to nanosecond timescale with STM. While these techniques are not limited to studying charge dynamics, it's crucial that the dynamics are manifested via transient changes in the conductance of states that can be probed by STM (i.e., states on or near the surface). If the conductance of the transient states does not differ significantly from the equilibrium state, such that the difference between the transient and equilibrium currents multiplied by the probe pulse duty cycle is smaller than the systems noise floor (typically 1 pA), the signal will be lost in the noise and will not be detectable by this technique. Because the experimental modifications of commercially available STM systems required to perform the techniques described in this paper are modest, it's anticipated these techniques will be widely accessible to the community.
1. Initial Setup of Microscope and Experiments
2. Preparation of the H-Si(100)-(2x1) Reconstruction
3. Assessing the Quality of the Pump-probe Pulses at the Tunnel Junction
4. Time-Resolved Scanning Tunneling Spectroscopy (TR-STS)
5. Time-resolved STM Measurements of Relaxation Dynamics
6. Time-resolved STM Measurements of Excitation Dynamics
The results presented in this section of the text have been previously published15,16. Figure 3 illustrates the behavior of an example selected DB with conventional STM. A conventional I(V) measurement (Figure 3A) clearly depicts a sharp change in the conductance of the DB at Vthr = -2.0 V. This behavior is also observed in STM images taken at -2.1 V (...
The variant of TR-STS in which the pump pulse is not applied is comparable to conventional STS, except that the system is being sampled at a high frequency rather than continuously. If the durations of the probe pulses are appropriate (>ΓLH), the TR-STS signal acquired without the pump pulse can be multiplied by a constant proportional to the experiment's duty cycle to coincide exactly with a conventional STS measurement. This is only possible because the measurements are made without the...
The authors declare that they have no competing financial interests.
We would like to thank Martin Cloutier and Mark Salomons for their technical expertise. We also thank NRC, NSERC, and AITF for financial support.
Name | Company | Catalog Number | Comments |
Low Temperature Scanning Tunneling Microscope | Scientaomicron | Custom-made with 500MHz bandwidth wiring | |
Arbitarary Function Genorator | Tektronix | AFG3252C | |
RF Power Splitter/ Combiner | Mini-Circuits | ZFRSC-42-S + | |
RF Switch | Mini-Circuits | X80-DR230-S + | |
Non-Contact Infrared Pyrometers | Micron Infrared | MI 140 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone