Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Dust charging and mobilization is demonstrated in three experiments with exposure to thermal plasma with beam electrons, beam electrons only, or ultraviolet (UV) radiation only. These experiments present the advanced understanding of electrostatic dust transport and its role in shaping the surfaces of airless planetary bodies.
Electrostatic dust transport has been hypothesized to explain a number of observations of unusual planetary phenomena. Here, it is demonstrated using three recently developed experiments in which dust particles are exposed to thermal plasma with beam electrons, beam electrons only, or ultraviolet (UV) radiation only. The UV light source has a narrow bandwidth in wavelength centered at 172 nm. The beam electrons with the energy of 120 eV are created with a negatively biased hot filament. When the vacuum chamber is filled with the argon gas, a thermal plasma is created in addition to the electron beam. Insulating dust particles of a few tens of microns in diameter are used in the experiments. Dust particles are recorded to be lofted to a height up to a few centimeters with a launch speed up to 1 m/s. These experiments demonstrate that photo and/or secondary electron emission from a dusty surface changes the charging mechanism of dust particles. According to the recently developed "patched charge model", the emitted electrons can be re-absorbed inside microcavities between neighboring dust particles below the surface, causing the accumulation of enhanced negative charges on the surrounding dust particles. The repulsive forces between these negatively charged particles may be large enough to mobilize and lift them off the surface. These experiments present the advanced understanding of dust charging and transport on dusty surfaces, and laid a foundation for future investigations of its role in the surface evolution of airless planetary bodies.
Airless planetary bodies, such as the Moon and asteroids, are covered with fine dust particles called regolith. These airless bodies, unlike Earth, are directly exposed to solar wind plasma and solar ultraviolet (UV) radiation, causing the regolith dust to be charged. These charged dust particles may therefore be mobilized, lofted, transported, or even ejected and lost from the surface due to electrostatic forces. The first suggested evidence of this electrostatic process was the so-called "lunar horizon glow", a distinct glow above the western horizon observed shortly after sunset by Surveyor 5, 6, and 7 spacecraft five decades ago (Figure 1a)1,2,3. It has been hypothesized that this glow was caused by sunlight scattered off from electrostatically lofted dust particles (5 μm radius) to a height < 1 m above the surface near the lunar terminator1,2,3. Electrostatically released fine dust was also suggested to be responsible for the ray-like streamers reaching a high altitude reported by the Apollo astronauts4,5.
Ever since these Apollo observations, a number of observations over other airless bodies were also linked to the mechanisms of electrostatic dust mobilization or lofting, such as the radial spokes in the Saturn's rings6,7,8, the dust ponds on asteroid Eros (Figure 1b)9 and comet 67P10, the porous surfaces indicated from the main-belt asteroid spectra11, the unusually smooth surface of Saturn's icy moon Atlas12, and the regolith at the lunar swirls13. In addition, the degradation of the laser retroreflectors on the lunar surface may be also caused by the accumulation of electrostatically lofted dust14.
Laboratory studies have been largely motivated by these unusual space observations in order to understand the physical processes of dust charging and transport. Dust mobilization has been observed in various plasma conditions, in which dust particles are shed off from a glass sphere surface15,16, levitated in plasma sheaths17, and recorded to move on both conducting and insulating surfaces18,19,20,21. However, how dust particles gain large enough charges to be lofted or mobilized remained poorly understood. The measurements of the charges on individual dust particles on a smooth surface22 and the average charge density on a dusty surface23 immersed in plasmas show that the charges are far too small for dust particles to be lofted or mobilized.
In the prior theories16,24,25, the charging was only considered to occur on the top surface layer that is directly exposed to UV or plasma. Charges are often considered to be distributed uniformly over the entire dusty surface, i.e., each individual dust particle acquires the same amount of charge, described by the so-called "shared charge model"16. However, the charges calculated from this model are much smaller than the gravitational force alone. A charge fluctuation theory that accounts for the stochastic process of the fluxes of electrons and ions to the surface16,24 shows a temporal enhancement in the electrostatic force, but it remains small in comparison to the gravitational force.
In this paper, electrostatic dust lofting and mobilization is demonstrated using three recently developed experiments26, which are important for understanding dust transport on the regolith of airless planetary bodies. These experiments are performed in the conditions of thermal plasma with beam electrons, beam electrons only or UV radiation only. These experiments demonstrate the validity of the recently developed "patched charge model"26,27, in which microcavities formed between neighboring dust particles below the surface can re-absorb the emitted photo and/or secondary electrons, generating large negative charges on the surfaces of the neighboring dust particles. The repulsive forces between these negative charges can become large enough to mobilize or lift off the dust particles.
Access restricted. Please log in or start a trial to view this content.
1. Vacuum chamber setup
2. Exposure to thermal plasma with beam electrons
3. Exposure to beam electrons only
4. Exposure to UV radiation only
Access restricted. Please log in or start a trial to view this content.
A set of experiments were performed using the top or bottom filaments. With the top filament setup, the hopping of the dust particles was recorded (Figure 3a). In contrast, the dust particles remained at rest when using the bottom filament. It has been measured that the vertical electric field at the surface was approximately same (16 V/cm) in both experiments under the conditions described in Protocol step 226. These results indicate ...
Access restricted. Please log in or start a trial to view this content.
For decades, the problem of electrostatic dust transport on the regolith of airless bodies remained an open question how regolith dust particles gain sufficiently large charges to become mobilized or lofted. Recent laboratory studies26,27 have fundamentally advanced the understanding of this problem.
Here, it is demonstrated three recently developed experiments to show dust charging and mobilization in thermal plasma with beam electron...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
This work was supported by the NASA/SSERVI's Institute for Modeling Plasma, Atmospheres and Cosmic Dust (IMPACT) and by the NASA Solar Systems Workings Program (Grant number: NNX16AO81G).
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Vacuum chamber | Any | NA | |
Vacuum electrode feedthrough | Lesker | EFT0113053 | |
Tungsten filament (0.1 mm thick) | Goodfellow | W055250 | Thoriated |
Power supply #1 (0-8V, 3A) | Agilent | E3610A | Or equivalent |
Power supply #2 (0-140V, 0.5A) | Agilent | E3612A | Or equivalent |
UV lamp | Osram | XERADEX L40/120/SB-SX48/KF50HV | Or equivalent |
Dust sample | Any | Mars or Lunar simulants or other types | Irregularly-shaped, sieved, insulating |
Insulating plate | Any | NA | Thickness > 1 cm |
Rubber sheet | Any | NA | Thickness > 1 mm |
Metal plate | Any | NA | |
Ceramic stands | McMaster | 94335A130 | 1/2" diameter |
Video camera (consumer) | Panasonic | HC-VX870 | Or equivalent |
Video camera (high-speed) | Phantom | V2512 | > 1000 fps |
LED lamp | Any | NA | > 500W Tungsten Equivalent |
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone