JoVE Logo

Zaloguj się

Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.

W tym Artykule

  • Podsumowanie
  • Streszczenie
  • Wprowadzenie
  • Protokół
  • Wyniki
  • Dyskusje
  • Ujawnienia
  • Podziękowania
  • Materiały
  • Odniesienia
  • Przedruki i uprawnienia

Podsumowanie

We present the construction of a 3D-printable hyperdrive with eighteen independently adjustable tetrodes. The hyperdrive is designed to record brain activity in freely behaving rats over a period of several weeks.

Streszczenie

Monitoring the activity patterns of a large population of neurons over many days in awake animals is a valuable technique in the field of systems neuroscience. One key component of this technique consists of the precise placement of multiple electrodes into desired brain regions and the maintenance of their stability. Here, we describe a protocol for the construction of a 3D-printable hyperdrive, which includes eighteen independently adjustable tetrodes, and is specifically designed for in vivo extracellular neural recording in freely behaving rats. The tetrodes attached to the microdrives can either be individually advanced into multiple brain regions along the track, or can be used to place an array of electrodes into a smaller area. The multiple tetrodes allow for simultaneous examination of action potentials from dozens of individual neurons, as well as local field potentials from populations of neurons in the brain during active behavior. In addition, the design provides for simpler 3D drafting software that can easily be modified for differing experimental needs.

Wprowadzenie

In the field of systems neuroscience, scientists study the neural correlates underlying cognitive processes such as spatial navigation, memory, and decision-making. For these types of studies, it is critical to monitor the activity of many individual neurons during animal behavior. Over the past decades, two important advances have been made to meet the experimental needs for extracellular neural recording in small animals1,2,3. First was the development of the tetrode, a bundle of four microwires used to record neural activity of neurons simultaneously1,2,4. The differential signal amplitudes of activity across the four channels of a tetrode allows for the isolation of individual neuron activity from many simultaneously recorded cells5. In addition, the flexible nature of the microwires allows greater stability of the tetrode minimizing the relative displacement between the tetrode and the target cell population. Tetrodes are now widely used instead of a single electrode for many brain studies in various species, including rodents1,2,6, primates7, and insects8. Second was the development of a hyperdrive carrying multiple independently movable tetrodes, which allows for the simultaneous monitoring of neural activity from larger populations of neurons from multiple recording locations3,9,10,11,12.

The availability of a reliable and affordable multi-tetrode recording device for small animals is limited. The classic hyperdrive, initially developed by Bruce McNaughton13, has been successfully used for neural recordings in freely behaving rats in many labs in the past two decades9,10,14,15. However, for technical reasons, the original components needed to build the McNaughton drive are now very difficult to obtain and are not compatible with recently improved data acquisition interfaces. The other well accepted design of hyperdrive requires the microdrives to be individually handcrafted, which could yield inconsistent results and consume substantial time12. In order to record neural activity from various brain regions in behaving rats, we developed a new hyperdrive using stereolithographic technology. We sought to satisfy the following requirements: (1) the new hyperdrive must allow precise displacement of tetrodes in the brain and provide stable recording from multiple target regions; (2) the new hyperdrive must be compatible with the magnetic quickclip system recently developed to allow easy connection; and (3) the new hyperdrive can be accurately reproduced with materials easily available. Here, we provide a technique for building the 3D-printable hyperdrive containing eighteen independently movable tetrodes, based upon the McNaughton design. In the protocol, we describe the details of the fabrication process of the new hyperdrive, which we have used successfully to record single-neuron action potentials and local field potentials from the postrhinal and medial entorhinal cortices over weeks in a freely behaving rat during natural foraging tasks.

Access restricted. Please log in or start a trial to view this content.

Protokół

1. Stereolithography of 3D Models

  1. Use stereolithographic techniques to print the hyperdrive parts and accessories. Each hyperdrive is comprised of eighteen shuttles, eighteen shuttle bolts, and one each of all other plastic pieces (Figure 1).
    NOTE: The accessories are not part of the hyperdrive but are necessary for hyperdrive construction.

2. Preparation of Accessories (Figure 2).

  1. Preparation of the microdrive rack (Figure 2C).
    1. Clean and expand the smaller through-holes and the larger blind-holes in the rack with a ø 0.71 mm (0.028") drill bit and a ø 0.84 mm (0.033") drill bit, respectively.
    2. Cut a ø 0.89 mm (0.035") welding rod into 17 mm long segments, round both ends, and insert each guide rod into the ø 0.84 mm (0.033") holes on the rack, leaving 11.5 mm outside (flush with the threaded rods).
    3. Fully insert six 0-80 threaded, 15.88 mm (5/8") long flat head screws down into the slots in the rack. Ensure that the guide rods and threaded rods are straight and parallel to one another. Fill the remaining space in the slots with dilute dental cement. Air dry on a benchtop for 15 min.
    4. Glue the welding rods and screws into the rack with thin super glue and allow to air dry for 15 min.
  2. Preparation of the core station (Figure 2E) .
    1. Thread the four holes with a 2-56 tap, and use 2-56, 4.76 mm (3/16") long nylon screws to secure the core in the station, if necessary.
  3. Preparation of the turning tool (Figure 2F) .
    1. Thread the hole on the handle with a 4-40 tap. Insert the machined tip into the slot in the handle and secure with a 4-40, 4.76 mm (3/16") long cup screw.
  4. Preparation of the hyperdrive holder (Figure 2G) .
    1. Thread the screw hole with an 8-32 tap. Use an 8-32, 9.52 mm (3/8") long nylon thumb screw to secure the hyperdrive when in use.
  5. Preparation of the rod positioning complex (Figure 2H).
    1. Thread the stem from the side with the larger hole (top) with an 8-32 tap to a depth of about 7 mm. Thread the smaller holes (six in the top, eighteen in the bottom) with a 0-80 tap. Expand the central hole in the top with a ø 4.76 mm (3/16") drill bit, if necessary.
    2. Assemble the stem to the top, using an 8-32, ø 4.76 mm (3/16"), 6.35 mm (1/4") long shoulder screw. Secure the bottom to the top with 0-80, 6.35 mm (1/4") long screws when in use.

3. Preparation of the Hyperdrive Components (Figure 3).

  1. Preparation of the hyperdrive nut (Figure 3A).
    1. Using the nut holder (Figure 2D), thread the nut with a 3/8-24 bottoming tap until smooth.
  2. Assembly of the hyperdrive core (Figure 3B).
    1. Clean and expand the holes in the core using different sized drill bits (twelve ground wire through-holes (inner ring):ø 0.61 mm (0.024"); the eighteen tetrode through-holes (middle ring): ø 0.66 mm (0.026") first, and then ø 0.71 mm (0.028"); the eighteen guide rod blind-holes (outer ring): ø 0.84 mm (0.033")).
    2. Thread the two through-holes on top of the core and the remaining eight blind-holes (four on the side, four near the bottom) with a 0-80 tap. Use a bottoming tap for the blind-holes.
    3. Create external threads at the base of the core using a 3/8-24 die. Adjust the die properly so the hyperdrive nut will fit over the new threads.
    4. Depending on the number of ground wires desired, insert multiple 6 mm long segments of 23-gauge metal tubing (cannulas) into the ground wire holes in the core, gluing them if necessary. File the ends of the ground wire cannulas until flush with the outside of the core, and clean the cannulas with a ø 0.30 mm (0.012") steel wire.
    5. Fully insert eighteen 0-80, 15.88 mm (5/8") long flat head screws head down into the slots in the core. Do not bend the screws or damage the threads during this process.
    6. Using the rod positioning complex and the core station, position eighteen 17 mm segments of ø 0.89 mm (0.035") welding rod over the guide rod holes in the core and hammer them down to be flush with the screws (about 5 mm).
    7. Correct the positions of the welding rods and screws if necessary, then tighten the central shoulder screw and the surrounding six screws in the rod positioning complex to secure the outward directions of the rods in the core. Screw the nut onto the core (with the rod positioning complex) and fit the core into the hyperdrive holder to allow easier positioning under a stereoscope.
    8. Fill the slots with dilute dental cement to secure the screws to the core and allow air drying for 15 min. Fill 2-3 slots at a time before the dental cement gets too thick. Scrape away any excess dental cement on the core to maintain a proper fit with the shield.
    9. Glue the screws and rods into the core with thin super glue, allow air drying for 15 min.
  3. Assembly of the microdrive (Figure 3C) .
    1. Clean and expand the two outer holes in the shuttle with drill bits (smaller hole: ø 0.61 mm (0.024") drill bit; larger hole: ø 0.89 mm (0.035") drill bit).
    2. Insert the shuttle bolt into the bolt holder base. Pay attention to the orientation. Close the bolt holder lid, hold tightly, and thread slowly through the hole in the lid with a 0-80 tap. Tap 2-3 times until smooth.
    3. Insert the shuttle bolt into the shuttle from the side with the smaller opening. Place the shuttle-shuttle bolt complex upside-down in the microdrive assembly station base.
    4. Cut a 15 mm segment of 23 gauge metal tubing and smooth both ends, then position the tubing over the ø 0.61 mm (0.024") hole, guided by the slot on the station Lid. Hammer the cannula into the hole until the upper end is flush with the station Lid.
    5. Remove the outer half of the upper tip of the cannula with a sanding wheel. Clean the cannula with a ø 0.30 mm (0.012") metal wire. Glue the cannula onto the shuttle using thin super glue, making sure not to glue the shuttle bolt to the shuttle, and air dry for 15 min.
    6. Prepare at least eighteen microdrives, test the microdrive on the microdrive rack. Make sure that the shuttle bolt can rotate smoothly in the shuttle and that the entire microdrive moves freely along the length of the threaded rod.
  4. Preparation of the central column (Figure 3D).
    1. Sand the top and bottom of the central column until flat, if needed. Thread the two holes in the central column with a 0-80 tap. Insert a 0-80 hex nut (3.18 mm (1/8") wide, 1.19 mm (3/64") high) into each slot.
  5. Preparation of the hyperdrive cap (Figure 3E).
    1. Using non-magnetic forceps, glue four magnets (3 mm in diameter, 1 mm thick) into the four wells, matching them to the N and S poles on the electrode interface board.
  6. Assembly of the guide cannulas into a bundle (Figure 3F).
    1. Place eighteen 30 gauge, thin wall cannulas (ID 0.19 mm,0.0075") into ø 2.29 mm (0.09") heat-shrink tubes (3-5 mm long, spaced apart along the bundle by 5-10 mm). Make all cannulas flush with one another on one end of the bundle.
    2. Shrink the heat-shrink tubes using a heat gun until the bundle is tight. Squeeze the bundle gently to shape it as desired (round or oval). Confirm that all cannulas are in the correct positions with no twisting, crossing, or bending.
    3. Mark the area(s) for soldering on the cannulas. The unsoldered portion should be 26 mm in length, while the soldered portion should be 5-10 mm. Move the shrinking tubes to the soldering marks to prevent spreading.
    4. Apply flux to one soldering area and solder while rotating the bundle. Cool at room temperature for at least 1 min. Repeat this step to solder the same area two more times. Smooth out the soldered portion by soldering without applying flux and filler material. Cool at room temperature for at least 1 min.
    5. Cut the bundle to the proper length with a diamond wheel at the highest speed, polish both ends to adjust the length (unsoldered part: 26 mm, soldered part: 5-10 mm as desired). Clean the guide cannulas with a ø 0.18 mm (0.007") metal wire under a stereoscope.
  7. Preparing the tetrodes. Similar procedures have been described8,16,17 .
    1. Adjust the height of the horizontal T bar and the position of the magnetic stirrer, so that the horizontal arm at the cross of the T bar is directly above the center of the magnetic stirrer. Hook one end of an S-hook to the center of a small magnetic stir bar, then glue them together. Clean the tetrode making space with compressed air and ethanol wipes.
    2. Circle the two ends of a piece of single tetrode wire around 40 cm in length together, then secure with a piece of copper tape.
    3. Lift the wire circle by holding the copper tape. Place the end opposite to the copper tape onto the horizontal arm of the T bar. Lower the copper tape gently (while the other end is still on the T bar), twist once, and place the copper tape onto the T bar. The tetrode circle is now in a figure eight ("∞") configuration with the copper tape sitting on top of the cross of the horizontal bar.
    4. Hold the copper tape on the T bar with one hand gently. With your other hand, hook the free end of the S-hook (with a magnetic stir attached to the other end) through the bottom of the tetrode wire circle, release the S-hook gently and let it straighten the four wires by the weight of the S hook.
    5. Adjust the height of the horizontal bar until the bottom of the S-hook is about 1 cm above the center of the magnetic stirrer plate.
    6. Bend the edge of the copper tape down to secure it to the horizontal bar. Examine the four straight tetrode wires by eye, then remove any debris.
    7. Turn on the stirrer twisting the four wires at a speed around 60 rpm, until the angle between the two opposite untwisted wires is about 60°.
    8. Set the heat gun to 210 °C, and heat the twisted wires by sweeping the gun along the straight length of the wires from different angles for 2 min to fuse them together by melting the VG bond coat.
    9. Lift the S-hook with stir gently and cut the lower end of the tetrode with fine scissors.
    10. Hold the copper tape on the horizontal bar with a finger, cut the wires from both edges of the copper tape with scissors, and remove the copper tape. Cut the remaining wire on the horizontal bar to release the tetrode.
    11. Place the completed tetrode in a dust-free box for storage. Prepare at least twenty-five tetrodes.

4. Assembly of the hyperdrive (Figure 4).

  1. Inserting the guide cannulas into the hyperdrive core (Figure 4A).
    1. Remove the heat-shrink tubes and slide a 4 mm segment of silicon tubing (ID 1.02 mm (0.04"), OD 2.16 mm (0.085")) along the bundle to the soldered/unsoldered border. Wedge the slit in the hyperdrive spacer to widen the central hole, allowing the spacer to slip around the silicon tube. Remove the wedge when the spacer sits at the center of the silicon tube.
    2. Organize the positions of the guide cannulas in the bundle by placing long segments (10 cm) of the ø 0.18mm (0.007") metal wire through each cannula into a specific tetrode hole in the hyperdrive core, preventing any crossover of the wires or cannulas in the process. Bend the ends of the wires to hold them in place.
    3. Push the cannulas through their respective holes in the core, being careful to avoid bending or crossing between them, until the free end of each cannula is at least 2 mm outside the upper end of the tetrode hole. Secure the spacer by screwing the nut onto the core, being careful to prevent the spacer from rotating. Apply a drop of very dilute dental cement from the top of the core onto the junction of the cannulas to secure their relative positions.
    4. Cut the guide wires from the soldered end of the bundle, and remove them from the cannulas by retracting from the free end.
  2. Assembly of the microdrives onto the hyperdrive Core (Figure 4B). A detailed spatial arrangement of the microdrives in the hyperdrive has been previously described11,13.
    1. Load the microdrives slowly and carefully onto each threaded rod of the core. Confirm that (1) the 23 gauge microdrive cannula goes into the tetrode hole smoothly, (2) the 30 gauge guide cannula goes into the 23 gauge microdrive cannula smoothly, and (3) the shuttle bolt turns smoothly along the threaded rod. Screw the microdrives down to 1.0-1.5 mm above the lower end of the threaded rods.
    2. Cut eighteen pieces of polyimide tubing (ID 0.11 mm (0.0045"), OD 0.14 mm (0.0055")) into 38-43 mm segments (length of the guide cannula bundle plus 7 mm). Clean each tube with a ø 0.08 mm (0.003") steel wire.
    3. Invert the core, insert the polyimide tubes carefully into the guide cannulas from the soldered end, and push them all the way in under a stereoscope. Flip the core upright and glue the upper end of the polyimide tube onto the microdrive cannula with thick super glue. Place the core upside-down and let the glue dry for 15 min.
    4. Cut the extra polyimide tubing at the upper end, leaving 0.5-1.0 mm outside of the microdrive cannula.
  3. Assembly of the ground wires (Figure 4C).
    1. Cut the number of ground wires necessary to lengths of 25-30 mm from coated steel wire (coated ø 0.20 mm (0.008"), bare ø 0.13 mm (0.005")). Strip 2 mm of the plastic insulation from both tips of the wires and insert one end of each into the ends of 6-8 mm long 30 gauge cannulas. Flatten the ends of the cannulas to secure the connection to their respective wires.
    2. Use a Dremel tool to cut the cannulas in half to create two complete ground wires from each.
    3. Insert the round end of the 30 gauge cannula into the upper end of the ground wire cannula in the core and press to make the insertion tight.
  4. Assembly of the electrode interface board (Figure 4D).
    1. Insert the central column into the core and secure with two 0-80, 7.94 mm (5/16") long socket head screws. Glue if necessary to make the central column steady in the core.
    2. Expand the portions of the slots in the EIB-72-QC-Large board that correspond to the two tapped holes in the central column with a ø 1.2 mm tap. Attach the electrode interface board to the central column with two 0-80, 3.97 mm (5/32") long pan head screws. Make sure the board is situated in the center and is secure.
  5. Connecting the ground wires (Figure 4E).
    1. Route each ground wire around the central column and connect the exposed free end to the electrode interface board with a gold pin at the designated ground hole.
  6. Loading the tetrodes into the hyperdrive, as previously described16,17 .
    1. Load each tetrode carefully into the polyimide tubes of the microdrives, being careful not to bend them during the process.
    2. Gently feed the free end wires into their designated holes in the electrode interface board and electrically connect them using gold pins.
    3. Cut the tetrodes individually to a proper length. Confirm that the portion of tetrodes protruding from the lower ends of the polyimide tubes after cutting is straight, otherwise replace the entire tetrode and recut.
  7. Attaching the shield.
    1. Attach the shield to the core using four 0-80, 3.97 mm (5/32") pan head screws. The numbers on the shield should match with the numbers on the electrode interface board.
  8. Plating the tetrode tips.
    1. Plate the tips of the tetrodes using the NanoZ plating device equipped with an ADPT-NZ-EIB-36 connector and an ADPT-EIB-72-QC-HS-36 adaptor17. Alternatively, plate them manually one by one as described elsewhere16. Plate the tetrode tips prior to use (e.g., one day before implantation), as impedance will gradually increase over time after plating. Replace the tetrodes that are shorted or obstructed during the process of plating, cut them to a proper length, and re-plate.
  9. Finalizing the hyperdrive (Figure 4F).
    1. Glue the tetrodes to their polyimide tubes as previously described16. Retract all of them back into their guide cannulas so the plated tips are not exposed.
    2. Screw four 0-80, 6.35 mm (1/4") long socket head screws into the four holes near the bottom of the hyperdrive core.
    3. Using a stereoscope, lower each tetrode slowly until the tip of the tetrode is just above the edge of the guide cannula. Meanwhile, locate the position of each tetrode in the guide cannula bundle. The map of the tetrode's position is critical for reconstruction of recording sites.
    4. Attach the cap to the drive and store the hyperdrive properly for implantation.

Access restricted. Please log in or start a trial to view this content.

Wyniki

We used a newly built hyperdrive to obtain trial results. The drive was equipped with tetrodes constructed from ø 17 µm (0.0007"), polyimide-coated platinum-iridium (90%-10%) wire. The tips of the tetrodes were plated in platinum black solution to reduce electrode impedances to between 100 and 200 kΩ at 1 kHz. The hyperdrive was implanted 4.6 mm left of the midline and 0.5 mm anterior to the transverse sinus on the skull of a 550 g, male Long-Evans rat. Additional groun...

Access restricted. Please log in or start a trial to view this content.

Dyskusje

Here, we describe the process of constructing a newly developed hyperdrive comprised of eighteen independently movable tetrodes. The drive can be constructed from affordable parts purchased at many available hardware stores, combined with components created by stereolithographic printing. The hyperdrive can be chronically implanted onto a rat's skull using standard surgical procedures and is capable of recording extracellular neural activity while the animal performs various behavioral tasks.

Access restricted. Please log in or start a trial to view this content.

Ujawnienia

The authors have nothing to disclose.

Podziękowania

We thank the Moser Lab at the Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, for the chronic neural recording procedures in rats. This work was supported by NIH grant R21 NS098146, and Human Frontier Science Program Long-Term Fellowship LT000211/2016-L to L. Lu.

Access restricted. Please log in or start a trial to view this content.

Materiały

NameCompanyCatalog NumberComments
Welding rodBlue DemonER308L-035-01TStainless steel, 0.035" in diameter
ScrewMcMaster91771A060Stainless steel, flat head, 0-80 thread, 5/8" in length
ScrewMcMaster91772A051Stainless steel, pan head, 0-80 thread, 5/32" in length
ScrewMcMaster92196A056Stainless steel, socket head, 0-80 thread, 5/16" in length
ScrewMcMaster92196A055Stainless steel, socket head, 0-80 thread, 1/4" in length
ScrewMcMaster95868A131Nylon,  socket head, 2-56 thread, 3/16" in length, black
Screw nutMcMaster90730A001Stainless steel, narrow hex,  0-80 thread
Shoulder screwMcMaster90298A213Stainless steel, 8-32 thread, 3/16" in diameter, 1/4" in length
Cup screwMcMaster92313A105Stainless steel, 4-40 thread, 3/16" in length
Thumb screwMcMaster94323A592Nylon, 8-32 thread, 3/8" in length, black
MagnetApexM3X1MMDINeodymium, 3 mm X 1 mm disc
Metal tubingSmall PartsB00137QHNSStainless steel, 23 gauge, 0.0253" OD, 0.013" ID, 0.006" wall
Metal tubingNew England Small TubeCustom-madeStainless steel, 30 gauge, 0.012/0.0125" OD, 0.007/0.008" ID, full hard
Heat-shrink tubingMcMaster7856K720.09" ID before shrinking, blue
Silicone tubingA-M Systems8073000.040" ID, 0.085" OD
Polyimide tubingA-M Systems8234000.0045" ID, 0.0005" wall
Ground wireA-M Systems7915000.005" bare, 0.008" coated, half hard
Tetrode wireCalifornia Fine WireCustom-made0.0007" in diameter, platinum-iridium (90%-10%), HML and VG coating
EIBNeuralynxEIB-72-QC-Large
Gold pinsNeuralynxlarge EIB pins
TapBalax01302-000M1.2 thread size
TapMcMaster2522A8110-80 thread size, bottoming
TapMcMaster2522A7710-80 thread size, plug
TapMcMaster26955A943/8"-24 thread size, bottoming
TapMcMaster2522A7132-56 thread size
TapMcMaster2522A7154-40 thread size
TapMcMaster2522A7188-32 thread size
DieMcMaster2576A4573/8"-24 thread size, 1" OD
Drill bitMcMaster30585A82Wire gauge 65, 0.035" in diameter
Drill bitMcMaster30585A83Wire gauge 66, 0.033" in diameter
Drill bitMcMaster30585A87Wire gauge 70, 0.028" in diameter
Drill bitMcMaster30585A88Wire gauge 71, 0.026" in diameter
Drill bitMcMaster30585A91Wire gauge 73, 0.024" in diameter
Drill bitMcMaster8870A233/16" in diameter
Dremel discWagner31MDiamond coated, 22 mm in diameter, 0.17 mm in thickness
Steel wirePrecision Brand212120.012" in diameter, full hard
Steel wirePrecision Brand210070.007" in diameter, full hard
Steel wireA-M Systems7927000.003" in diameter, half hard
Super glueLoctiteLT-40640# 406
Super glueLoctiteLT-41550# 415
Dental acrylic powder Teets223-3773Coral
Dental acrylic liquidTeets223-4003

Odniesienia

  1. O'Keefe, J., Recce, M. L. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus. 3 (3), 317-330 (1993).
  2. Wilson, M. A., McNaughton, B. L. Dynamics of the hippocampal ensemble code for space. Science. 261 (5124), 1055-1058 (1993).
  3. Gothard, K. M., Skaggs, W. E., Moore, K. M., McNaughton, B. L. Binding of hippocampal CA1 neural activity to multiple reference frames in a landmark-based navigation task. J Neurosci. 16 (2), 823-835 (1996).
  4. Gray, C. M., Maldonado, P. E., Wilson, M., McNaughton, B. Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex. J Neurosci Methods. 63 (1-2), 43-54 (1995).
  5. Buzsaki, G. Large-scale recording of neuronal ensembles. Nat Neurosci. 7 (5), 446-451 (2004).
  6. Fyhn, M., Hafting, T., Witter, M. P., Moser, E. I., Moser, M. B. Grid cells in mice. Hippocampus. 18 (12), 1230-1238 (2008).
  7. Skaggs, W. E., et al. EEG sharp waves and sparse ensemble unit activity in the macaque hippocampus. J Neurophysiol. 98 (2), 898-910 (2007).
  8. Guo, P., Pollack, A. J., Varga, A. G., Martin, J. P., Ritzmann, R. E. Extracellular wire tetrode recording in brain of freely walking insects. J Vis Exp. (86), (2014).
  9. Knierim, J. J., McNaughton, B. L., Poe, G. R. Three-dimensional spatial selectivity of hippocampal neurons during space flight. Nat Neurosci. 3 (3), 209-210 (2000).
  10. Leutgeb, S., et al. Independent codes for spatial and episodic memory in hippocampal neuronal ensembles. Science. 309 (5734), 619-623 (2005).
  11. Lansink, C. S., et al. A split microdrive for simultaneous multi-electrode recordings from two brain areas in awake small animals. J Neurosci Methods. 162 (1-2), 129-138 (2007).
  12. Kloosterman, F., et al. Micro-drive array for chronic in vivo recording: drive fabrication. J Vis Exp. (26), (2009).
  13. McNaughton, B. L. Google Patents. , Available from: https://www.google.com/patents/US5928143 (1999).
  14. Redish, A. D., et al. Independence of firing correlates of anatomically proximate hippocampal pyramidal cells. J Neurosci. 21 (5), RC134(2001).
  15. Schmitzer-Torbert, N., Redish, A. D. Neuronal activity in the rodent dorsal striatum in sequential navigation: separation of spatial and reward responses on the multiple T task. J Neurophysiol. 91 (5), 2259-2272 (2004).
  16. Nguyen, D. P., et al. Micro-drive array for chronic in vivo recording: tetrode assembly. J Vis Exp. (26), (2009).
  17. Chang, E. H., Frattini, S. A., Robbiati, S., Huerta, P. T. Construction of microdrive arrays for chronic neural recordings in awake behaving mice. J Vis Exp. (77), e50470(2013).
  18. Vandecasteele, M., et al. Large-scale recording of neurons by movable silicon probes in behaving rodents. J Vis Exp. (61), e3568(2012).
  19. Siegle, J. H., et al. Chronically implanted hyperdrive for cortical recording and optogenetic control in behaving mice. Conf Proc IEEE Eng Med Biol Soc. 2011, 7529-7532 (2011).
  20. Brunetti, P. M., et al. Design and fabrication of ultralight weight, adjustable multi-electrode probes for electrophysiological recordings in mice. J Vis Exp. (91), e51675(2014).
  21. Hull, C. W. Google Patents. , Available from: https://www.google.com/patents/US4575330 (1986).
  22. Ludvig, N., Potter, P. E., Fox, S. E. Simultaneous single-cell recording and microdialysis within the same brain site in freely behaving rats: a novel neurobiological method. J Neurosci Methods. 55 (1), 31-40 (1994).

Access restricted. Please log in or start a trial to view this content.

Przedruki i uprawnienia

Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE

Zapytaj o uprawnienia

Przeglądaj więcej artyków

Artificial IntelligenceAI Writing AssistantText GenerationCopywritingContent GenerationAI assisted WritingLanguage ModelAutomated Content Creation

This article has been published

Video Coming Soon

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone