Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
We present the construction of a 3D-printable hyperdrive with eighteen independently adjustable tetrodes. The hyperdrive is designed to record brain activity in freely behaving rats over a period of several weeks.
Monitoring the activity patterns of a large population of neurons over many days in awake animals is a valuable technique in the field of systems neuroscience. One key component of this technique consists of the precise placement of multiple electrodes into desired brain regions and the maintenance of their stability. Here, we describe a protocol for the construction of a 3D-printable hyperdrive, which includes eighteen independently adjustable tetrodes, and is specifically designed for in vivo extracellular neural recording in freely behaving rats. The tetrodes attached to the microdrives can either be individually advanced into multiple brain regions along the track, or can be used to place an array of electrodes into a smaller area. The multiple tetrodes allow for simultaneous examination of action potentials from dozens of individual neurons, as well as local field potentials from populations of neurons in the brain during active behavior. In addition, the design provides for simpler 3D drafting software that can easily be modified for differing experimental needs.
In the field of systems neuroscience, scientists study the neural correlates underlying cognitive processes such as spatial navigation, memory, and decision-making. For these types of studies, it is critical to monitor the activity of many individual neurons during animal behavior. Over the past decades, two important advances have been made to meet the experimental needs for extracellular neural recording in small animals1,2,3. First was the development of the tetrode, a bundle of four microwires used to record neural activity of neurons simultaneously1,2,4. The differential signal amplitudes of activity across the four channels of a tetrode allows for the isolation of individual neuron activity from many simultaneously recorded cells5. In addition, the flexible nature of the microwires allows greater stability of the tetrode minimizing the relative displacement between the tetrode and the target cell population. Tetrodes are now widely used instead of a single electrode for many brain studies in various species, including rodents1,2,6, primates7, and insects8. Second was the development of a hyperdrive carrying multiple independently movable tetrodes, which allows for the simultaneous monitoring of neural activity from larger populations of neurons from multiple recording locations3,9,10,11,12.
The availability of a reliable and affordable multi-tetrode recording device for small animals is limited. The classic hyperdrive, initially developed by Bruce McNaughton13, has been successfully used for neural recordings in freely behaving rats in many labs in the past two decades9,10,14,15. However, for technical reasons, the original components needed to build the McNaughton drive are now very difficult to obtain and are not compatible with recently improved data acquisition interfaces. The other well accepted design of hyperdrive requires the microdrives to be individually handcrafted, which could yield inconsistent results and consume substantial time12. In order to record neural activity from various brain regions in behaving rats, we developed a new hyperdrive using stereolithographic technology. We sought to satisfy the following requirements: (1) the new hyperdrive must allow precise displacement of tetrodes in the brain and provide stable recording from multiple target regions; (2) the new hyperdrive must be compatible with the magnetic quickclip system recently developed to allow easy connection; and (3) the new hyperdrive can be accurately reproduced with materials easily available. Here, we provide a technique for building the 3D-printable hyperdrive containing eighteen independently movable tetrodes, based upon the McNaughton design. In the protocol, we describe the details of the fabrication process of the new hyperdrive, which we have used successfully to record single-neuron action potentials and local field potentials from the postrhinal and medial entorhinal cortices over weeks in a freely behaving rat during natural foraging tasks.
Access restricted. Please log in or start a trial to view this content.
1. Stereolithography of 3D Models
2. Preparation of Accessories (Figure 2).
3. Preparation of the Hyperdrive Components (Figure 3).
4. Assembly of the hyperdrive (Figure 4).
Access restricted. Please log in or start a trial to view this content.
We used a newly built hyperdrive to obtain trial results. The drive was equipped with tetrodes constructed from ø 17 µm (0.0007"), polyimide-coated platinum-iridium (90%-10%) wire. The tips of the tetrodes were plated in platinum black solution to reduce electrode impedances to between 100 and 200 kΩ at 1 kHz. The hyperdrive was implanted 4.6 mm left of the midline and 0.5 mm anterior to the transverse sinus on the skull of a 550 g, male Long-Evans rat. Additional groun...
Access restricted. Please log in or start a trial to view this content.
Here, we describe the process of constructing a newly developed hyperdrive comprised of eighteen independently movable tetrodes. The drive can be constructed from affordable parts purchased at many available hardware stores, combined with components created by stereolithographic printing. The hyperdrive can be chronically implanted onto a rat's skull using standard surgical procedures and is capable of recording extracellular neural activity while the animal performs various behavioral tasks.
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
We thank the Moser Lab at the Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, for the chronic neural recording procedures in rats. This work was supported by NIH grant R21 NS098146, and Human Frontier Science Program Long-Term Fellowship LT000211/2016-L to L. Lu.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Welding rod | Blue Demon | ER308L-035-01T | Stainless steel, 0.035" in diameter |
Screw | McMaster | 91771A060 | Stainless steel, flat head, 0-80 thread, 5/8" in length |
Screw | McMaster | 91772A051 | Stainless steel, pan head, 0-80 thread, 5/32" in length |
Screw | McMaster | 92196A056 | Stainless steel, socket head, 0-80 thread, 5/16" in length |
Screw | McMaster | 92196A055 | Stainless steel, socket head, 0-80 thread, 1/4" in length |
Screw | McMaster | 95868A131 | Nylon, socket head, 2-56 thread, 3/16" in length, black |
Screw nut | McMaster | 90730A001 | Stainless steel, narrow hex, 0-80 thread |
Shoulder screw | McMaster | 90298A213 | Stainless steel, 8-32 thread, 3/16" in diameter, 1/4" in length |
Cup screw | McMaster | 92313A105 | Stainless steel, 4-40 thread, 3/16" in length |
Thumb screw | McMaster | 94323A592 | Nylon, 8-32 thread, 3/8" in length, black |
Magnet | Apex | M3X1MMDI | Neodymium, 3 mm X 1 mm disc |
Metal tubing | Small Parts | B00137QHNS | Stainless steel, 23 gauge, 0.0253" OD, 0.013" ID, 0.006" wall |
Metal tubing | New England Small Tube | Custom-made | Stainless steel, 30 gauge, 0.012/0.0125" OD, 0.007/0.008" ID, full hard |
Heat-shrink tubing | McMaster | 7856K72 | 0.09" ID before shrinking, blue |
Silicone tubing | A-M Systems | 807300 | 0.040" ID, 0.085" OD |
Polyimide tubing | A-M Systems | 823400 | 0.0045" ID, 0.0005" wall |
Ground wire | A-M Systems | 791500 | 0.005" bare, 0.008" coated, half hard |
Tetrode wire | California Fine Wire | Custom-made | 0.0007" in diameter, platinum-iridium (90%-10%), HML and VG coating |
EIB | Neuralynx | EIB-72-QC-Large | |
Gold pins | Neuralynx | large EIB pins | |
Tap | Balax | 01302-000 | M1.2 thread size |
Tap | McMaster | 2522A811 | 0-80 thread size, bottoming |
Tap | McMaster | 2522A771 | 0-80 thread size, plug |
Tap | McMaster | 26955A94 | 3/8"-24 thread size, bottoming |
Tap | McMaster | 2522A713 | 2-56 thread size |
Tap | McMaster | 2522A715 | 4-40 thread size |
Tap | McMaster | 2522A718 | 8-32 thread size |
Die | McMaster | 2576A457 | 3/8"-24 thread size, 1" OD |
Drill bit | McMaster | 30585A82 | Wire gauge 65, 0.035" in diameter |
Drill bit | McMaster | 30585A83 | Wire gauge 66, 0.033" in diameter |
Drill bit | McMaster | 30585A87 | Wire gauge 70, 0.028" in diameter |
Drill bit | McMaster | 30585A88 | Wire gauge 71, 0.026" in diameter |
Drill bit | McMaster | 30585A91 | Wire gauge 73, 0.024" in diameter |
Drill bit | McMaster | 8870A23 | 3/16" in diameter |
Dremel disc | Wagner | 31M | Diamond coated, 22 mm in diameter, 0.17 mm in thickness |
Steel wire | Precision Brand | 21212 | 0.012" in diameter, full hard |
Steel wire | Precision Brand | 21007 | 0.007" in diameter, full hard |
Steel wire | A-M Systems | 792700 | 0.003" in diameter, half hard |
Super glue | Loctite | LT-40640 | # 406 |
Super glue | Loctite | LT-41550 | # 415 |
Dental acrylic powder | Teets | 223-3773 | Coral |
Dental acrylic liquid | Teets | 223-4003 |
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone