Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Optical levitation is a method for levitating micrometer-sized dielectric objects using laser light. Utilizing computers and automation systems, an experiment on optical levitation can be controlled remotely. Here, we present a remotely controlled optical levitation system that is used both for educational and research purposes.
The work presents an experiment that allows the study of many fundamental physical processes, such as photon pressure, diffraction of light or the motion of charged particles in electrical fields. In this experiment, a focused laser beam pointing upwards levitate liquid droplets. The droplets are levitated by the photon pressure of the focused laser beam which balances the gravitational force. The diffraction pattern created when illuminated with laser light can help measure the size of a trapped droplet. The charge of the trapped droplet can be determined by studying its motion when a vertically directed electrical field is applied. There are several reasons motivating this experiment to be remotely controlled. The investments required for the setup exceeds the amount normally available in undergraduate teaching laboratories. The experiment requires a laser of Class 4, which is harmful to both skin and eyes and the experiment uses voltages that are harmful.
The fact that light carries momentum was first suggested by Kepler when he explained why the tail of a comet always points away from the sun. The use of a laser to move and trap macroscopic objects was first reported by A. Ashkin and J. M. Dziedzic in 1971 when they demonstrated that it is possible to levitate micrometer sized dielectric objects1. The trapped object was exposed to an upward directed laser beam. Part of the laser beam was reflected on the object which imposed a radiation pressure on it that was sufficient to counterbalance gravity. Most of the light, however, was refracted through the dielectric object. The change of the direction of the light causes a recoil of the object. The net effect of the recoil for a particle placed in a Gaussian beam profile is that the droplet will move towards the region of highest light intensity2. Hence, a stable trapping position is created in the center of the laser beam at a position slightly above the focal point where radiation pressure balances gravity.
Since the optical levitation method allows small objects to be trapped and controlled without being in contact with any objects, different physical phenomena can be studied using a levitated droplet. However, the experiment presents two limitations to be reproduced and applied at schools or universities since not all institutions can afford the required equipment and since there are certain risks in the hands-on operation of the laser.
Remote laboratories (RLs) offer online remote access to the real laboratory equipment for experimental activities. RLs first appeared at the end of the 90s, with the advent of the Internet, and their importance and use have been growing over the years, as the technology has progressed and some of their major concerns have been solved3. However, the core of RLs has remained the same over time: the use of an electronic device with Internet connection to access a lab, and control and monitor an experiment.
Due to their remote nature, RLs can be used to offer experimental activities to users without exposing them to the risks that may be associated with the realization of such experiments. These tools allow students to spend more time working with laboratory equipment, and hence develop better laboratory skills. Other advantages of RLs are that they 1) facilitate for handicapped people to perform experimental work, 2) expand the catalog of experiments offered to students by sharing RLs between universities and 3) increase the flexibility in scheduling laboratory work, since it can be performed from home when a physical laboratory is closed. Finally, RLs also offer training in operating computer-controlled systems, which nowadays are an important part of research, development and industry. Therefore, RLs cannot only offer a solution to both the financial and safety issues that traditional labs present, but also provide more interesting experimental opportunities.
With the experimental setup used in this work, it is possible to measure the size and charge of a trapped droplet, investigate the motion of charged particles in electric fields and analyze how a radioactive source can be used to change the charge on a droplet4.
In the experimental setup presented, a powerful laser is directed upwards and focused into the center of a glass cell4. The laser is a 2 W 532 nm diode-pumped solid-state laser (CW), where usually about 1 Watt (W) is used. The focal length of the trapping lens is 3.0 cm. Droplets are generated with a piezo droplet dispenser and descend through the laser beam until they are trapped just above the focus of the laser. Trapping occurs when the force from the upward directed radiation pressure is equal to the downward directed gravitational force. There is no upper time limit observed for trapping. The longest time a droplet has been trapped is 9 hours, thereafter, the trap was turned off. The interaction between the droplet and the laser field produces a diffraction pattern which is used to determine the size of the droplets.
The droplets emitted from the dispenser consist of 10% glycerol and 90% water. The water part quickly evaporates, leaving a 20 to 30 µm sized glycerol droplet in the trap. The maximum size of a droplet that can be trapped is about 40 µm. There is no evaporation observed after about 10 s. At this point, all water is expected to have evaporated. The long trapping time without any observable evaporation indicates that there is minimal absorption and that the droplet essentially is at room temperature. The surface tension of the droplets makes them spherical. The charge of the droplets generated by the droplet dispenser depends on the environmental conditions in the laboratory, where they most commonly become negatively charged. The top and the bottom of the trapping cell consists of two electrodes placed 25 mm apart. They can be used to apply a vertical electric direct current (DC) or alternating current (AC) field over the droplet. The electric field is not strong enough to create any arcs even if 1000 volts (V) is applied over the electrodes. If a DC field is used, the droplet moves up or down in the laser beam to a new stable equilibrium position. If an AC field is applied instead, the droplet oscillates around its equilibrium position. The magnitude of the oscillations depends on the size and charge of the droplet, on the intensity of the electric field, and on the stiffness of the laser trap. An image of the droplet is projected onto a position-sensitive detector (PSD), which allows users to track the vertical position of the droplet.
This work presents a successful initiative of modernizing teaching and research using Information and Communication Technologies through an innovative RL on optical levitation of charged droplets which illustrates modern concepts in physics. Figure 1 shows the architecture of the RL. Table 1 shows the possible injuries that lasers can cause according to their class; In this setup, a Class IV laser has been used, which is the most dangerous one. It can operate with up to 2.0 W of visible laser radiation, so the safety provided by the remote operation is clearly suitable for this experiment. The optical levitation of charged droplets RL was presented in the work of D. Galan et al. in 20185. In this work, it is demonstrated how it can be used online by teachers who want to introduce their students to modern concepts of physics without having to be concerned about the costs, the logistics or the safety issues. Students access the RL through a web portal called University Network of Interactive Laboratories (UNILabs - https://unilabs.dia.uned.es) in which they can find all the documentation regarding the theory related to the experiment and the use of the experimental setup by means of a web application. By using the concept of a remote laboratory, experimental work in modern physics that requires costly and dangerous equipment can be made available to new groups of students. Furthermore, it enhances the formal learning by providing traditional students with more laboratory time and with experiments that normally are inaccessible outside research laboratories.
Access restricted. Please log in or start a trial to view this content.
NOTE: The laser used in this experiment is a class IV laser delivering up to 1 W of visible laser radiation. All personnel present in the laser laboratory must have conducted adequate laser safety training.
1. Hands-On Experimental Protocol
2. Remote Experimentation Protocol
Access restricted. Please log in or start a trial to view this content.
When the laser beam is well aligned, and the bottom plate is clean, the drops are almost immediately trapped. When a droplet is trapped it can stay in the trap for several hours, giving plenty of time for investigations. The radius r of the droplets is in the range of 25 ≤ r ≤ 35 µm and the charge has been measured between 1.1x10-17 ±1.1x10-18 C and 5.5x10-16 ±5.5x10-17 C. The size of the droplets stays, accor...
Access restricted. Please log in or start a trial to view this content.
This work presents a setup for carrying out a modern physics experiment in which droplets are optically levitated. The experiment can be performed either in a traditional hands-on way or remotely. With the remote system establishment, students and researchers all over the world can get access to the experimental set-up. This also guarantees the users’ safety, since they do not need to be in presence of the high-power laser and electric fields required for the experiment. In addition, the users can interact with the...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
This work has been supported by the Swedish Research Council, Carl Trygger´s Foundation for Scientific Research and the Spanish Ministry of Economy and Competitiveness under the project CICYT DPI2014-55932-C2-2-R. Thanks to Sannarpsgymnasiet for letting us try the RL with students.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
GEM 532 | Laser Quantum | Green laser with adjustable power between 50 mW and 2 W | |
Lateral Effect Position Sensor | THOR Lab | PDP90A | PSD to sensor the position of the droplet in the pipette |
Advanced Educational Spectrometer Kit, Metric | THOR Lab | EDU-SPEB1/M | Mirrors and other elements to control the laser beam |
Pipette | Self made | The chamber were the droplet is trapped was specially made for this setup | |
AC/DC Power supply | Keithley Instruments, Inc. | 2380-500-30 | A power supply to generate the electric field (0V - 500V DC) |
Power Distribution Unit | APC | AP7900 | A PDU to remotelly connect the lab instrumentation |
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone