Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
* Wspomniani autorzy wnieśli do projektu równy wkład.
Here, we present a protocol to improve the quality of data from home sleep testing by providing a method to enhance instructions through a structured participant visit. This protocol includes the implementation of a step-by-step educational manual with photos to ensure proper placement of equipment.
The gold standard for sleep monitoring is attended in-lab polysomnography; however, this method may be cost-prohibitive and inconvenient for patients and research participants. Home sleep testing has gained momentum in the field of sleep medicine due to its convenience and lower cost, as well as being more naturalistic. The accuracy and quality of home sleep testing, however, may be variable because studies are not monitored by sleep technologists. There has been some success in improving the accuracy of home sleep studies by having trained sleep technicians assist participants inside their homes with putting on the devices, but this can be intrusive and time-consuming for those involved. In this protocol, participants undergo at-home sleep monitoring with multiple devices: 1) a single-channel EEG device; 2) a home sleep test for sleep-disordered breathing and periodic limb movements; 3) actigraphy; and 4) sleep logs. A major challenge of this study is obtaining high-quality sleep monitoring data on the first attempt in order to minimize participant burden. This protocol describes the implementation of educational manuals with step-by-step instructions and photos. The goal is to improve the quality of home sleep testing.
The relationship between sleep and Alzheimer's disease (AD) is a growing area of research with sleep disturbances hypothesized to have a role in both AD pathogenesis and as a biomarker for AD pathology1,2. In order to study the relationship between sleep and AD biomarkers, cognitively normal or very mildly impaired participants aged ≥65 years old are recruited from a longitudinal study of aging at the Knight Alzheimer's Disease Research Center (ADRC) at Washington University School of Medicine. Although this study was focused on AD research, the methods presented here have broad applicability to home sleep testing in older adults. Attended in-lab polysomnography is the gold standard for sleep monitoring3, but such monitoring can be cost-prohibitive and inconvenient for participants. An alternative is home sleep testing. The accuracy of home sleep studies may be improved by having trained sleep technicians assist participants inside their homes with device placement, but this can also be intrusive and time-consuming4. Therefore, this protocol was developed to instruct the participants how to set up sleep monitoring devices at home and still collect reliable data.
Participants were asked to wear a home sleep test (HST) for measuring sleep-disordered breathing (e.g., obstructive sleep apnea) and periodic leg movements. Following HST recording, participants wore a single-channel EEG device for 6 nights to monitor brain waves for EEG-based sleep staging. Previous findings indicate that the single-channel EEG device has a high level of agreement with polysomnography for multiple sleep parameters5. Throughout the single-channel EEG and HST monitoring period, participants completed a sleep log and were asked to wear actigraphy on their nondominant wrist for the entire duration of the sleep study to track activity. Studies were defined as acceptable if there were at least 2 nights recorded by the single-channel EEG device with <10% artifact and at least 1 night recorded on the HST with ≥4 hours of scorable data. Initially, the failure rate due to poor data quality was ~40−50%. Repeat monitoring for participants with poor data quality was deemed too burdensome, therefore, this protocol was developed.
Previous work found that many elderly persons have difficulty adjusting to technological interventions6,7,8,9. This impacts numerous fields from geriatrics to education and is particularly relevant to medical studies in which older adults must use or interact with unfamiliar technologies. In order to reduce in-home study failure rates, education manuals were created that provided pictures and step-by-step directions to set up the HST and single-channel EEG devices. The education manuals were derived from the device user manuals10,11. Additionally, a 24-hour helpline was provided to participants, so they could reach a member of the study team at any time with any questions or concerns.
To analyze the impact of this protocol, a retrospective review was conducted on the success and failure rates for acceptable data quality from the at-home sleep monitoring before and after implementation of the education manuals. The data sources were successful recordings and participant calls to research study staff with questions. Participants were asked to come into the sleep center to learn about the sleep monitoring equipment. During the 2-hour visit, a study team member educated each participant about the equipment using the manuals, which provided step-by-step instructions for device usage. After reviewing the manuals in the office and being guided through the application and use of the devices, participants were given the opportunity to independently practice applying the home sleep monitoring devices using the manuals as a guide. Feedback was provided to participants during the visit and they were given the opportunity to ask questions in addition to reapplying the equipment as needed. Participants then took the equipment home, put the ambulatory equipment on themselves at night, and were encouraged to call a study team member at any time, day or night, for assistance troubleshooting any questions or problems.
All single-channel EEG studies were scored manually by registered sleep technologists who were validated, gold-standard scorers using modified American Academy of Sleep Medicine (AASM) scoring criteria5. HST recordings included airflow measured by nasal pressure transducer and thermistor, respiratory effort measured by thoracic and abdominal respiratory inductance plethysmograph belts, body position, pulse oximetry, and leg electromyogram (EMG) using the optional ExG yoke. Lights off and lights on were determined by the time that each participant pressed the event button on the HST device and/or entry in a sleep log. A registered sleep technologist manually scored the HST studies and then a board-certified sleep physician performed an epoch-by-epoch review of each study.
Following the introduction of this protocol, the failure rate was reduced to 19% and reliable data was obtained. The protocol represents a novel, low-cost, and effective way to increase the success rate of at-home sleep studies. While the HST device has been used in some studies, it is primarily used as a diagnostic tool and not for scientific studies12,13. This protocol also provides a method that allows participants to easily use a Positive Airway Pressure (PAP) machine while they are wearing either the HST or single-channel EEG device. The use of the HST and single-channel EEG devices with education manuals is a particularly useful research tool that could be more widely utilized using the method shown in this protocol.
Access restricted. Please log in or start a trial to view this content.
This protocol was approved by the Washington University Human Research Protection Office.
Instructions were written specific to commercially available devices and their related software for data collection (see Table of Materials).
1. Set up of the sleep monitoring devices prior to the participant visit
2. Participant visit for instruction on wearing the sleep monitoring devices
3. Data Download and Processing
4. Quality assurance procedures
NOTE: All recordings are reviewed by a registered sleep technologist and a board-certified sleep physician. Specific markers of quality assurance are reviewed as follows:
Access restricted. Please log in or start a trial to view this content.
Single-channel EEG
At the start of the study, an acceptable overnight recording with the single-channel EEG device was defined as 1) aligning with the sleep period defined by sleep log and/or actigraphy device, and 2) <10% of the recording unscorable due to movement, myogenic, electrode, or other artifacts. Each participant needed at least 2 nights meeting these criteria. Prior to the implementation of the single-channel EEG manual, 14 participants wore the sing...
Access restricted. Please log in or start a trial to view this content.
This protocol is the novel application of instructional manuals in conjunction with participant education for in-home ambulatory sleep monitoring. Based on the results, the implementation of the protocol with instruction manuals improves the feasibility of in-home sleep testing in older adults. In-lab polysomnography remains the gold standard for sleep monitoring but may be limited by cost as well as disrupted sleep due to the new environment (i.e., the "first night" effect19). This protoc...
Access restricted. Please log in or start a trial to view this content.
CDT, JSM, CMS, IRB, JB, and BPL: Authors have nothing to disclose.
DMH co-founded and is on the scientific advisory board of C2N Diagnostics. DMH consults for Genentech, AbbVie, Proclara, and Denali. Washington University receives research grants to the lab of DMH from C2N Diagnostics, AbbVie, and Denali.
Neither Dr. Morris nor his family owns stock or has equity interest (outside of mutual funds or other externally directed accounts) in any pharmaceutical or biotechnology company. Dr. Morris is currently participating in clinical trials of antidementia drugs from Eli Lilly and Company and Biogen. He receives research support from Eli Lilly/Avid Radiopharmaceuticals and is funded by NIH grants # P50AG005681; P01AG003991; P01AG026276 and UF01AG032438.
We thank the participants for their time.
Funding: This study was supported by the following grants from the National Institutes of Health: P01 AG03991; P01 AG026276; P50 AG05681; K76 AG054863; UL1 TR000448; KL2 TR000450. The Ellison Medical Foundation and a Physician Scientist Training Award from the American Sleep Medicine Foundation also supported this study. The funding sources had no role in the study design, data collection, management, analysis, interpretation of the data, or manuscript preparation.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Actigraph | Phillips Respironics | 1048090 | Actiwatch 2 |
Actiware site license | Phillips Respironics | 1114828 | Actigraphy software |
Actigraphy docking station | Phillips Respironics | 1048092 | Actiwatch charger |
Home Sleep Test (HST) | Phillips Respironics | 1043941 | Alice PDX device |
Sleepware G3 software | Phillips Respironics | 1082462 | Alice PDX software |
CPAP titration kit | Pro-tech | P1391 | Connects PAP to HST |
3-foot SpO2 Extension Cable (Nonin) | Phillips Respironics | 927-3 | Oximeter cable for HST |
SpO2 Sensor (Nonin) | Phillips Respironics | 936 | Oximeter finger clip for HST |
SD Card Reader | Phillips Respironics | 1047300 | card reader for HST |
EXG yoke | Phillips Respironics | 1040808 | HST cable for leg leads |
Dual Snap Leg Lead Wires | MVAP | TLC0048 | leg leads for HST |
Small Foam Electrodes | MVAP | 5000ZT | electrodes for leg leads |
Thermistor Airflow Sensor | Pro-tech | P1388 | HST thermoistor |
Oral/Nasal Air flow Pressure Cannula | Saltar Labs | 5760-7 | Pressure Transducer |
Zrip DuraBelt kit | Phillips Respironics | P1837 | HST Thoracic and Abdominal belt kit |
Single-channel EEG | Advanced Brain Monitoring | SP40-1001 | Sleep Profiler device |
SP Sensor EEG kit | Advanced Brain Monitoring | SP40-4225.1 | Sleep Profiler electrodes |
CPAP masks | Resmed | 62925, 63504, 63506, 63507, 63445, 63446, 63447 |
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone