Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
This paper discusses the use of a continuous and objective real-time locating system to measure walking activity associated with wandering behaviors, focusing on older adults with cognitive impairment. Walking activity is measured by walking distance, sustained walking distance, and sustained gait speed. Also assessed are gait quality and balance ability.
A real-time locating system (RTLS) can be used to track the walking activity of institutionalized older adults in long-term care who are at risk for wandering behaviors. The benefits of a RTLS are objective and continuous measurements of activity. Self-report methods of activity, especially wandering, by health care staff are vulnerable to floor effects and recall bias, and continuous clinical or research observation over the long-term can be time-consuming and expensive. Health care staff also fail to recognize the onset and/or duration of wandering behaviors, which are associated with a variety of adverse health outcomes in this population but amenable to intervention. RTLS technologies can measure the walking activity of institutionalized residents with cognitive impairment over time with a high degree of accuracy. This is particularly useful for the study of wandering, defined as walking for at least 60 seconds with few (if any) breaks in activity. Wandering is associated with disease progression, hospitalizations, falls and death. Previous work suggests older adults with poor balance ability and high sustained walking activity may be particularly susceptible to poor health outcomes. RTLS's are used to assess cognitive impairment and factors associated with gait and balance; however, supplemental paper and pencil gait/balance tools may be used to further refine risk profiles. This project discusses the use of a RTLS to measure walking activity and also gait quality and balance ability measures on this population.
An older adult's ability to perform daily activities of daily living and be physically active is associated with gait quality and balance ability.1 Previous work shows correlations between balance ability and self-reported physical activity among sedentary older adults.2 These correlations remain across older adult populations. For example, among older adults in the community, self-reported activity levels are significantly correlated with balance3 and walking capacity;4 the physical activity of ambulatory long-term care residents is positively correlated with both gait and balance (using the Tinetti Performance Oriented Mobility Assessment).5 Institutionalization is associated with decreased walking activity in later life6 and result in a high prevalence of sedentary behavior in this population.7 In fact, a reported 80% or more of the waking hours of an institutionalized resident is spent sitting or lying down5 and few long-term care residents achieve the recommended 30 minutes of daily moderate activity.7 Inadequate physical activity is associated with de-conditioning, hospitalization and other poor health outcomes in this population. Understanding the walking activity of this population may aid in tailored gait and/or balance interventions to increase physical activity.
Some institutionalized older adults with cognitive impairment (CI) begin walking excessively as a result of disease progression. Wandering occurs when there are little/no breaks in activity over the course of several hours/days. Wandering is associated with fatigue, weight loss, injurious falls, sleep disturbances, getting lost, and death.8 Compared to nursing home residents with no or mild/moderate CI, residents with severe CI demonstrate 20% more activity characterized as wandering, 26% of which are "lapping" behaviors, a type of wandering where a resident circles the room.9 Despite this, it is difficult for health care staff and other observers to distinguish between physical activity and wandering. Intra-individual changes in walking activity can be subtle and wandering is not a behavioral problem to be curbed until the older adult attempts to elope (e.g., escape the facility). Wandering is common; the prevalence of wandering varies from study to study but an estimated 38%10 to 80% of older adults with CI will wander at some point over the course of the disease.11
It is difficult to understand the walking activity of institutionalized older adults as the population is heterogeneous (e.g., varying cognitive levels, health conditions) and activity is difficult to objectively measure. Self-report methods of activity by health care staff better reflect elopement or attempted escapes from the facility, and continuous observation over the long-term is vulnerable to inter-rater errors, time-consuming and expensive.12,13 Real-time locating system (RTLS) technologies have the potential to objectively and continuously measure walking activity among older adults with CI. Notably, there is heterogeneity in the RTLS field and multiple systems may theoretically be used: ultra-wideband (UWB; see attached Table of Materials), infrared + radio frequency, ultrasound and machine vision systems. However, to assess wandering behaviors, a tracking technology that is small and unobtrusive, wireless, capable of wide-area tracking, with no line of sight issues and accuracy to within 20cm is needed and there are few (if any) systems other than a RTLS using UWB that fulfills these requirements. For example, infrared + radio frequency technology rely on creating "zones" which detail when a resident passes through, but is not specific enough to determine wandering behaviors except within a meter or two, which is far too gross for these purposes. Ultrasound and machine vision have issues with identification and reflections; machine vision systems have good resolution but cannot differentiate residents without resorting to using an RFID tag to compensate for the inadequate capabilities of current artificial intelligence. A RTLS utilizing UWB has a wider range and spatial resolution of about 20cm -- versus one meter or more for other systems -- making it the most precise and capable of capturing all activity patterns.14,15 The RTLS using UWB discussed here is also stable, having been designed for 24/7 industrial applications. Researchers and clinicians have previously used this system where precision is essential - to prevent and predict falls, to assess dementia and changes in cognition - in a wide variety of settings -- assisted living, hospital, nursing homes, and rehabilitation units.13,16,17
This paper will detail the protocol of a RTLS using UWB to measure walking activity [walking distance, sustained walking distance, and sustained gait speed (average meters per second/week calculated during sustained walking only)] and paper and pencil tests of CI, gait ability and balance quality, as the latter of which are key components of walking activity. Study findings will focus on using RTLS to distinguish between walking distance, which is associated with physical activity and thus positive health outcomes, and sustained walking distance which is associated with wandering and thus negative health outcomes.
Access restricted. Please log in or start a trial to view this content.
All methods described here have been approved by the Institutional Review Board at the Corporal Michael J. Crescenz VA Medical Center in Philadelphia, PA.
1. Installation and Set-Up of a Real-Time Locating System (RTLS)
2. Use the RTLS Tags to Locate and Track Residents in Real-Time
3. Measuring Walking Activity and Wandering
4. Measuring Cognitive Impairment, Gait and Balance
Access restricted. Please log in or start a trial to view this content.
RTLS raw data require smoothing to improve the location data's precision (see protocol step 9 under the section, "Use the RTLS Tags to Locate and Track Residents in Real-Time"). Though controlled with default settings in the power plot tab during installation and set-up (see step 1.6.3 in the associated protocol), without additional smoothing there will continue to be noise and jumps. With regard to noise, even when sedentary for several hours, the active RTLS tag continues to...
Access restricted. Please log in or start a trial to view this content.
There are several critical steps to be followed prior to beginning the RTLS project that are worth discussion. While a typical common area in a long-term care facility (about 10m x 13m or 1,000 square feet) requires four sensors, this varies based on the environment and the number of sensors required for the project are based on the level of precision required and the environment. Protrusions and glass walls, for example, will require additional sensors. If there are no line of sight issues, four sensors will cover an ev...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
This work was supported by a Career Development Award # [E7503W] and a Merit Award # [RX002413-01A2] from the United States (U.S.) Department of Veterans Affairs Rehabilitation Research and Development Service. The contents of this work do not represent the views of the U.S. Department of Veterans Affairs or the United States Government.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
UWB Sensor | Ubisense | There are two product lines to choose from; IP30 is the latest | |
Tags | Ubisense | There are two types of tags to choose from; if IP30 sensors are chosen, use DFLAT33 mini tags | |
Timing Distribution Unit | Ubisense | UBITIMING | |
Network and Timing Combiner | Ubisense | UBICOMSPL21 | |
Home Base License | Ubisense | HOMEBASE | |
Expert Support | Ubisense | MANDS2 | |
Project Implmentation Services | Ubisense | PROJSERV | |
Smart Factory | Ubisense | specialized software designed to manage the RTLS | |
Server | Any | Laptop with at least 8MB RAM | |
Network Cabling | Any | 3rd party or subcontract | |
Tinetti Performance Oriented Mobility Assessment | Tinetti ME, Williams TF, Mayewski R. Fall risk index for elderly patients based on number of chronic disabilities. The American journal of medicine. Mar 1986;80(3):429-434 | ||
The Montreal Cognitive Assessment | https://www.mocatest.org |
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone