Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
* Wspomniani autorzy wnieśli do projektu równy wkład.
Amphiphilic gold nanoparticles can be used in many biological applications. A protocol to synthesize gold nanoparticles coated by a binary mixture of ligands and a detailed characterization of these particles is presented.
Gold nanoparticles covered with a mixture of 1-octanethiol (OT) and 11-mercapto-1-undecane sulfonic acid (MUS) have been extensively studied because of their interactions with cell membranes, lipid bilayers, and viruses. The hydrophilic ligands make these particles colloidally stable in aqueous solutions and the combination with hydrophobic ligands creates an amphiphilic particle that can be loaded with hydrophobic drugs, fuse with the lipid membranes, and resist nonspecific protein adsorption. Many of these properties depend on nanoparticle size and the composition of the ligand shell. It is, therefore, crucial to have a reproducible synthetic method and reliable characterization techniques that allow the determination of nanoparticle properties and the ligand shell composition. Here, a one-phase chemical reduction, followed by a thorough purification to synthesize these nanoparticles with diameters below 5 nm, is presented. The ratio between the two ligands on the surface of the nanoparticle can be tuned through their stoichiometric ratio used during synthesis. We demonstrate how various routine techniques, such as transmission electron microscopy (TEM), nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA), and ultraviolet-visible (UV-Vis) spectrometry, are combined to comprehensively characterize the physicochemical parameters of the nanoparticles.
The ligand shell of gold nanoparticles can be engineered to exhibit several different properties that can be applied to address challenges in biomedicine1,2,3,4. Such versatility allows for the control of the intermolecular interactions between nanoparticles and biomolecules5,6,7. Hydrophobicity and charge play a decisive role, as well as other surface parameters that affect how nanoparticles interact with biomolecules5,8,9. To tune the nanoparticles' surface properties, the choice of thiolate molecules that make up the ligand shell offers a myriad of possibilities, according to the characteristics sought. For example, a mixture of ligand molecules with hydrophobic and hydrophilic (e.g., charged) end groups are often used to generate amphiphilic nanoparticles10,11.
One prominent example of this type of nanoparticles is protected by a mixture of OT and MUS (hereafter called MUS:OT nanoparticles) that has been shown to possess many relevant properties12,13,14. First, with a ligand shell composition of 66% MUS (hereafter 66:34 MUS:OT), the colloidal stability of the nanoparticles is high, reaching up to 33% in weight in deionized water, as well as in phosphate-buffered saline (1x, 4 mM phosphate, 150 mM NaCl)15. Moreover, these particles do not precipitate at relatively low pH values: for example, at pH 2.3 and with salt concentrations of 1 M NaCl15, these nanoparticles remain colloidally stable for months.The stoichiometric ratio between the two molecules on the ligand shell is important because it dictates the colloidal stability in solutions with a high ionic strength16.
These particles have been shown to traverse the cell membrane without porating it, via an energy-independent pathway1,12. The spontaneous fusion between these particles and lipid bilayers underlies their diffusivity through cell membranes17. The mechanism behind this interaction is the minimization of contact between a hydrophobic solvent-accessible surface area and water molecules upon fusion with lipid bilayers18. Compared to all-MUS nanoparticles (nanoparticles having only the MUS ligand on their shell), the higher hydrophobicity on mixed MUS:OT nanoparticles (for example, at a 66:34 MUS:OT composition) increases the span of the core diameter that can fuse with lipid bilayers18.Different self-assembly organizations of the ligand shell correlate to distinct binding modes of 66:34 MUS:OT nanoparticles with various proteins, such as albumin and ubiquitin, when compared to all-MUS particles19.Recently, it has been reported that 66:34 MUS:OT nanoparticles can be utilized as a broad-spectrum antiviral agent that irreversibly destroys the viruses because of multivalent electrostatic bindings of MUS ligands and nonlocal couplings of OT ligands to capsid proteins14.In all these cases, it has been found that the hydrophobic content, as well as the core size of the nanoparticles, determines how these bio-nano interactions take place. These diverse properties of MUS:OT nanoparticles have prompted many computer simulation studies that aimed to clarify the mechanisms underpinning the interactions between MUS:OT particles and various biological structures such as lipid bilayers20.
The preparation of MUS:OT-protected Au nanoparticles poses a few challenges. First, the charged ligand (MUS) and the hydrophobic ligand (OT) are immiscible. Thus, the solubility of the nanoparticles and of the ligands needs to be taken into account throughout the synthesis, as well as during characterization. Additionally, the purity of the MUS ligand molecules—specifically, the content of inorganic salts in the starting material—influences the quality, reproducibility, as well as the short- and long-term colloidal stability of the nanoparticles.
Here, a detailed synthesis and characterization of this class of amphiphilic gold nanoparticles protected by a mixture of MUS and OT are outlined. A protocol for the synthesis of the negatively charged MUS ligand is reported to ensure the purity and, hence, the reproducibility of different nanoparticle syntheses. Then, the procedure to generate these nanoparticles, based on a common one-phase synthesis, followed by thorough purification, is reported in detail. Various necessary characterization techniques21, such as TEM, UV-Vis, TGA, and NMR, have been combined to obtain all the necessary parameters for any further biological experiments.
1. Synthesis of 11-mercapto-1-undecanesulfonate (MUS)
NOTE: This protocol can be used at any scale desired. Here, a 10 g scale-of-product is described.
2. Nanoparticle Synthesis: Preparation of the Reagents
3. Synthesis of Gold Nanoparticles
4. Workup of the Synthesis
5. Characterization of the Nanoparticles
The reaction steps to synthesize MUS are shown in Figure 1. The 1H NMR spectra of the product of each step are represented in Figure 2. The synthesis workflow of the binary MUS:OT amphiphilic gold nanoparticles is described in Figure 3. Following the synthesis, the workup of the nanoparticles consisted of washing the particles several times with ethanol and DI water. Prior to any character...
This protocol describes first the synthesis of MUS ligand and, then, the synthesis and characterization of amphiphilic MUS:OT gold nanoparticles. Synthesizing MUS with minimal salt content enables a better reliability of the stoichiometric ratio between the ligands during the nanoparticle synthesis, which is a key factor for the reproducible synthesis of MUS:OT nanoparticles with a target hydrophobic content (Figure 8). The use of methanol as a common solvent for MUS and OT, along with the s...
The authors have nothing to disclose.
Z.P.G. and F.S. thank the Swiss National Science Foundation and, specifically, NCCR 'Molecular Systems Engineering'. Z.L. and F.S. thank the support of the Swiss National Science Foundation Division II grant. All authors thank Quy Ong for fruitful discussions and for proofreading the manuscript.
Name | Company | Catalog Number | Comments |
11-bromo-1-undecene | Sigma Aldrich | 467642-25 ml | |
Sodium Sulfite | Sigma Aldrich | S0505-250 g | |
Benzyltriethyl-ammonium bromide | Sigma Aldrich | 147125-25 g | |
Methanol | VWR | BDH1135-2.5 LP | |
DI water | Millipore | ZRXQ003WW | Deionized water |
1 L round bottom flask | DURAN | 24 170 56 | |
Diethyl ether | Sigma Aldrich | 1.00930 EMD Millipore | |
Stirring bar | Sigma Aldrich | Z329207, | |
Dow Corning High Vacuum Grease | Sigma Aldrich | Z273554 ALDRICH | |
Filtering flask | DURAN | 20 201 63 | |
Filtering Buchner Funnel | FisherSci | 11707335 | |
Ethanol >99.8%, ACS, Reagent | VWR | 2081.321DP | |
Deuterium dioxide | Sigma Aldrich | 151882 ALDRICH | |
Thioacetic acid 96% | Sigma Aldrich | T30805 ALDRICH | |
Carbon black | Sigma Aldrich | 05105-1KG | |
Celite | Sigma Aldrich | D3877 SIGMA-ALDRICH | Filtration medium |
Condenser | Sigma Aldrich | Z531154 | |
Hydrochloric acid, ACS reagent 37% | Sigma Aldrich | 320331 SIGMA-ALDRICH | |
Sodium Hydroxide, BioXtra, pellets (anhydrous) | Sigma Aldrich | S8045 SIGMA-ALDRICH | |
Centrifuge tubes | VWR | 525-0155P | |
250 mL round bottom flask | DURAN | 24 170 37 | |
500 mL round bottom flask | DURAN | 24 170 46 | |
Nitric acid, fACS reagent 70% | Sigma Aldrich | 438073 SIGMA-ALDRICH | |
Gold(III) chloride trihydrate >99.9% trace metal basis | Sigma Aldrich | 520918 ALDRICH | |
1-octanethiol >98.5% | Sigma Aldrich | 471836 ALDRICH | |
Sodium Borohydride purum p.a.>96% | Sigma Aldrich | 71320 ALDRICH | |
addition funnel | SIgma Aldrich | Z330655 SIGMA | |
Funnel | DURAN | 21 351 46 | |
2V folded filtering papers | Whatman | 1202-150 | |
Amicon filters | Merck | UFC903024 | |
Iodine, ACS reagent, >99.8%, solid | Sigma Aldrich | 207772 SIGMA-ALDRICH | |
5 mm NMR-Tubes, Type 5HP (high precision) | Armar | 32210.503 | Length 178 mm |
Methanol-d4 99.8 atom%D | Armar | 16400.2035 | |
TGA crucible | Thepro | 9095-9270.45 | |
400 mesh carbon supported copper grid | Electron Microscopy Science | CF400-Cu | |
quartz cuvette | Hellma Analytics | 100-1-40 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone