Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
To allow reliable predictions of the softening of polymeric substrates for neural implants in an in vivo environment, it is important to have a reliable in vitro method. Here, the use of dynamic mechanical analysis in phosphate buffered saline at body temperature is presented.
When using dynamically softening substrates for neural implants, it is important to have a reliable in vitro method to characterize the softening behavior of these materials. In the past, it has not been possible to satisfactorily measure the softening of thin films under conditions mimicking body environment without substantial effort. This publication presents a new and simple method that allows dynamic mechanical analysis (DMA) of polymers in solutions, such as phosphate buffered saline (PBS), at relevant temperatures. The use of environmental DMA allows measurement of the softening effects of polymers due to plasticization in various media and temperatures, which therefore allows a prediction of the materials behavior under in vivo conditions.
A new generation of materials used as substrates for neural implants comprises softening shape memory polymers1,2,3,4,5,6,7,8,9. These materials are stiff enough during implantation to overcome critical buckling forces, but they become up to three orders of magnitude softer after implantation in a body environment. It is predicted that these materials show a better device-tissue interaction due to the reduced mismatch in modulus as compared to traditional materials used in neural implants, such as tungsten or silicon. Traditional, stiff devices show inflammatory response after implantation, followed by tissue encapsulation and astroglial scarring which often results in device failure10,11. It is a common assumption that less stiff devices minimize the foreign body response12,13,14. The stiffness of a device is dictated by its cross-sectional area and modulus. Therefore, it is important to reduce both factors to improve the device compliance and, ultimately, the device tissue interaction.
The work on softening polymers was inspired by the work of Nguyen et al.15, who demonstrated that mechanically-compliant intracortical implants reduce the neuroinflammatory response. They have previously used mechanically-adaptive poly(vinyl acetate)/tunicate cellulose nanocrystal (tCNC) nanocomposites (NC), which become compliant after implantation.
The Voit lab, on the other hand, uses the highly tunable system of thiol-ene and thiol-ene/acrylate polymers. These materials are advantageous in that the degree of softening after exposure to in vivo conditions can easily be tuned by the polymer design. By choosing the right polymer composition and crosslink density, the glass transition temperature and Young's modulus of the polymer can be modified2,4,5,6,8. The underlying effect of the softening is the plasticization of the polymer in an aqueous environment. By having a polymer with a glass transition temperature (Tg) above body temperature when dry (the state during implantation), but below body temperature after being immersed in water or PBS, the resulting stiffness/modulus of the polymer can shift from glassy (stiff) when dry to rubbery (soft) when implanted16.
However, exact and reliable measurements of the softening due to plasticization and the shift of Tg from the dry to wet states have not been able to be measured in the past. Traditional dynamic mechanical analysis is performed in air or inert gases and does not allow for measuring of the thermomechanical properties of polymers inside a solution. In previous studies, the polymers have been immersed in PBS for various amounts of time. Swollen samples were then used to perform dynamic mechanical analysis (DMA)6,7,8. However, since the procedure involves a temperature ramp, samples start to dry during the measurement and do not yield representative data. This is especially true if the sample size becomes smaller. In order to predict the softening of neural probes, it would be necessary to test 5 to 50 µm-thin polymer films, which is not possible with traditional DMA due to the abovementioned drying of the samples during the measurement.
Hess et al.17 have designed a custom-built microtensile testing machine to assess the mechanical properties of mechanically adaptive materials using an environmentally controlled method. They have previously used an airbrush system to spray water on samples during the measurement to prevent them from drying out.
The use of environmental DMA (Figure 1), however, allows for measurement of polymer films in solutions, such as water and PBS, at various temperatures. This allows not only measurement of the polymer's thermomechanical properties in the soaked/softened state but also measurement of its softening kinetics. Even tensile tests and swelling measurements are possible inside the immersion bath of this machine. This allows for exact studies of the plasticization-induced softening of polymer substrates to predict in vivo behaviors.
1. Preparation of polymer samples for testing
2. Machine setup
3. Sample loading and unloading for dry measurements
4. Sample loading and unloading for immersion testing
5. Measurements
6. Data interpretation
The use of environmental DMA allows the analysis of softening kinetics and overall softening capabilities of polymers. By using the temperature-time measuring mode of the protocol, the softening profiles of different polymer formulations can be compared to each other (Figure 6). This method can also be used to quantify softening and swelling rates of polymers. It can be seen in Figure 4 that different polymer formulations may und...
The use of environmental DMA allows the study of the behavior of various polymers used as substrates for neural implants19 or other biomedical devices in solution and to mimic in vivo conditions. This includes, but is not limited to, polyimide, parylene-C, PDMS, and SU-8. Hydrogels and extracellular matrix (ECM) materials can also be investigated using this method. The differences of overall softening of the polymer as well as its softening kinetics can be easily compared between differen...
The authors declare that they have no competing financial interests.
The authors want to thank Dr. Taylor Ware for allowing us to use his environmental DMA.
This work was supported by the Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program [W81XWH-15-1-0607]. Opinions, interpretations, conclusions, and recommendations are those of the authors and not necessarily endorsed by the Department of Defense.
Name | Company | Catalog Number | Comments |
1,3,5-Triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione (TATATO) | Sigma-Aldrich | 114235-100G | |
2,2-Dimethoxy-2-phenylacetophenone (DMPA) | Sigma-Aldrich | 196118-50G | |
CO2 laser Gravograph LS100 | Gravotech, Inc. | ||
Corning Large Glass Microscope Slides, 75 x 50mm | Ted Pella | 26005 | |
Environmental DMA: RSA-G2 Solids Analyzer | TA Instruments | ||
ESD Safe Plastic Tweezer, Tips; Flat, Duckbill, 11.5 cm | Cole Palmer | EW-07387-17 | |
Laurell WS-650-8B spin coater | Laurell Technologies Corporation | ||
liquid nitrogen | Air gas | ||
PBS, 1X Solution, Fisher BioReagents | Fisher Scientific | BP243820 | |
SHEL LAB vacuum oven | VWR International | 89409-484 | |
Silicon wafer | University Wafer | Mechanical grade | |
The RSA-G2 Immersion System | TA Instruments | ||
Trimethylolpropane tris(3-mercaptopropionate) (TMTMP) | Sigma-Aldrich | 381489-100ML | |
UVP CL-1000 crosslinking chamber with 365 nm bulbs | VWR International | 21474-598 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone