Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Provided here is a practical tutorial for an open-access, standardized image processing pipeline for the purpose of lesion-symptom mapping. A step-by-step walkthrough is provided for each processing step, from manual infarct segmentation on CT/MRI to subsequent registration to standard space, along with practical recommendations and illustrations with exemplary cases.
In lesion-symptom mapping (LSM), brain function is inferred by relating the location of acquired brain lesions to behavioral or cognitive symptoms in a group of patients. With recent advances in brain imaging and image processing, LSM has become a popular tool in cognitive neuroscience. LSM can provide fundamental insights into the functional architecture of the human brain for a variety of cognitive and non-cognitive functions. A crucial step in performing LSM studies is the segmentation of lesions on brains scans of a large group of patients and registration of each scan to a common stereotaxic space (also called standard space or a standardized brain template). Described here is an open-access, standardized method for infarct segmentation and registration for the purpose of LSM, as well as a detailed and hands-on walkthrough based on exemplary cases. A comprehensive tutorial for the manual segmentation of brain infarcts on CT scans and DWI or FLAIR MRI sequences is provided, including criteria for infarct identification and pitfalls for different scan types. The registration software provides multiple registration schemes that can be used for processing of CT and MRI data with heterogeneous acquisition parameters. A tutorial on using this registration software and performing visual quality checks and manual corrections (which are needed in some cases) is provided. This approach provides researchers with a framework for the entire process of brain image processing required to perform an LSM study, from gathering of the data to final quality checks of the results.
Lesion-symptom mapping (LSM), also called lesion-behavior mapping, is an important tool for studying the functional architecture of the human brain1. In lesion studies, brain function is inferred and localized by studying patients with acquired brain lesions. The first case studies linking neurological symptoms to specific brain locations performed in the nineteenth century already provided fundamental insights into the anatomical correlates of language and several other cognitive processes2. Yet, the neuroanatomical correlates of many aspects of cognition and other brain functions remained elusive. In the past decades, improved structural brain imaging methods and technical advances have enabled large-scale in vivo LSM studies with high spatial resolution (i.e., at the level of individual voxels or specific cortical/subcortical regions of interest)1,2. With these methodological advances, LSM has become an increasingly popular method in cognitive neuroscience and continues to offer new insights into the neuroanatomy of cognition and neurological symptoms3. A crucial step in any LSM study is the accurate segmentation of lesions and registration to a brain template. However, a comprehensive tutorial for the preprocessing of brain imaging data for the purpose of LSM is lacking.
Provided here is a complete tutorial for a standardized lesion segmentation and registration method. This method provides researchers with a pipeline for standardized brain image processing and an overview of potential pitfalls that must be avoided. The presented image processing pipeline was developed through international collaborations4 and is part of the framework of the recently founded Meta VCI map consortium, whose purpose is performing multicenter lesion-symptom mapping studies in vascular cognitive impairment <www.metavcimap.org>5. This method has been designed to process both CT and MRI scans from multiple vendors and heterogeneous scan protocols to allow combined processing of imaging datasets from different sources. The required RegLSM software and all other software needed for this protocol is freely available except for MATLAB, which requires a license. This tutorial focuses on the segmentation and registration of brain infarcts, but this image processing pipeline can also be used for other lesions, such as white matter hyperintensities6.
Prior to initiating an LSM study, a basic understanding of the general concepts and pitfalls is required. Several detailed guidelines and a hitchhiker's guide are available1,3,6. However, these reviews do not provide a detailed hands-on tutorial for the practical steps involved in gathering and converting brain scans to a proper format, segmenting the brain infarct, and registering the scans to a brain template. The present paper provides such a tutorial. General concepts of LSM are provided in the introduction with references for further reading on the subject.
General aim of lesion-symptom mapping studies
From the perspective of cognitive neuropsychology, brain injury can be used as a model condition to better understand the neuronal underpinnings of certain cognitive processes and to obtain a more complete picture of the cognitive architecture of the brain1. This is a classic approach in neuropsychology that was first applied in post-mortem studies in the nineteenth century by pioneers like Broca and Wernicke2. In the era of functional brain imaging, the lesion approach has remained a crucial tool in neuroscience because it provides proof that lesions in a specific brain region disrupt task performance, while functional imaging studies demonstrate brain regions that are activated during the task performance. As such, these approaches provide complementary information1.
From the perspective of clinical neurology, LSM studies can clarify the relationship between the lesion location and cognitive functioning in patients with acute symptomatic infarcts, white matter hyperintensities, lacunes, or other lesion types (e.g., tumors). Recent studies have shown that such lesions in strategic brain regions are more relevant in explaining cognitive performance than global lesion burden2,5,7,8. This approach has the potential to improve understanding of the pathophysiology of complex disorders (in this example, vascular cognitive impairment) and may provide opportunities for developing new diagnostic and prognostic tools or supporting treatment strategies2.
LSM also has applications beyond the field of cognition. In fact, any variable can be related to lesion location, including clinical symptoms, biomarkers, and functional outcome. For example, a recent study determined infarct locations that were predictive of functional outcome after ischemic stroke10.
Voxel-based versus region of interest-based lesion-symptom mapping
To perform lesion-symptom mapping, lesions need to be segmented and registered to a brain template. During the registration procedure, each patient's brain is spatially aligned (i.e., normalized or registered to a common template) to correct for differences in brain size, shape, and orientation so that each voxel in the lesion map represents the same anatomical structure for all patients7. In standard space, several types of analyses can be performed, which are briefly summarized here.
A crude lesion-subtraction analysis can be performed to show the difference in lesion distribution in patients with deficits compared to patients without deficits. The resulting subtraction map show regions that are more often damaged in patients with deficits and spared in patients without deficits1. Though a lesion-subtraction analysis can provide some insights into correlates of a specific function, it provides no statistical proof and is now mostly used when the sample size is too low to provide enough statistical power for voxel-based lesion-symptom mapping.
In voxel-based lesion-symptom mapping, an association between the presence of a lesion and cognitive performance is determined at the level of each individual voxel in the brain (Figure 1). The main advantage of this method is the high spatial resolution. Traditionally, these analyses have been performed in a mass-univariate approach, which warrants correction for multiple testing and introduces a spatial bias caused by inter-voxel correlations that are not taken into account1,10,11. Recently developed approaches that do take inter-voxel correlations into account (usually referred to as multivariate lesion-symptom mapping methods, such as Bayesian analysis13, support vector regression4,14, or other machine learning algorithms15) show promising results and appear to improve the sensitivity and specificity of findings from voxel-wise LSM analyses compared to traditional methods. Further improvement and validation of multivariate methods for voxel-wise LSM is an ongoing process. The best method choice for specific lesion-symptom mapping depends on many factors, including the distribution of lesions, outcome variable, and underlying statistical assumptions of the methods.
In the region of interest (ROI)-based lesion-symptom mapping, an association between the lesion burden within a specific brain region and cognitive performance is determined (see Figure 1 in Biesbroek et al.2 for an illustration). The main advantage of this method is that it considers the cumulative lesion burden within an anatomical structure, which in some cases may be more informative than a lesion in a single voxel. On the other hand, ROI-based analyses have limited power for detecting patterns that are only present in a subset of voxels in the region16. Traditionally, ROI-based lesion-symptom mapping is performed using logistic or linear regression. Recently, multivariate methods that deal better with collinearity have been introduced (e.g., Bayesian network analysis17, support vector regression4,18, or other machine learning algorithms19), which may improve the specificity of findings from lesion-symptom mapping studies.
Patient selection
In LSM studies, patients are usually selected based on a specific lesion type (e.g., brain infarcts or white matter hyperintensities) and the time interval between diagnosis and neuropsychological assessment (e.g., acute vs. chronic stroke). The optimal study design depends on the research question. For example, when studying the functional architecture of the human brain, acute stroke patients are ideally included because functional reorganization has not yet occurred in this stage, whereas chronic stroke patients should be included when studying the long-term effects of stroke on cognition. A detailed description of considerations and pitfalls in patient selection is provided elsewhere7.
Brain image preprocessing for the purpose of lesion-symptom mapping
Accurate lesion segmentation and registration to a common brain template are crucial steps in lesion-symptom mapping. Manual segmentation of lesions remains the gold standard for many lesion types, including infarcts7. Provided is a detailed tutorial on criteria for manual infarct segmentation on CT scans, diffusion weighted imaging (DWI), and fluid-attenuated inversion recovery (FLAIR) MRI sequences in both acute and chronic stages. The segmented infarcts (i.e., the 3D binary lesion maps) need to be registered before any across-subject analyses are performed. This protocol uses the registration method RegLSM, which was developed in a multicenter setting4. RegLSM applies linear and non-linear registration algorithms based on elastix20 for both CT and MRI, with an additional CT processing step specifically designed to enhance registration quality of CT scans21. Furthermore, RegLSM allows for using different target brain templates and an (optional) intermediate registration step to an age-specific CT/MRI template22. The possibility of processing both CT and MRI scans and its customizability regarding intermediate and target brain templates makes RegLSM a highly suitable image processing tool for LSM. The entire process of preparing and segmenting CT/MRI scans, registration to a brain template, and manual corrections (if required) are described in the next section.
Figure 1: Schematic illustration of the concept of voxel-based lesion-symptom mapping. The upper part shows the brain image pre-processing steps consisting of segmenting the lesion (an acute infarct in this case) followed by registration to a brain template (the MNI-152 template in this case). Below, a part of the registered binary lesion map of the same patient is shown as a 3D grid, where each cube represents a voxel. Taken together with the lesion maps of 99 other patients, a lesion overlay map is generated. For each voxel, a statistical test is performed to determine the association between lesion status and cognitive performance. The chi-squared test shown here is just an example, any statistical test could be used. Typically, hundreds of thousands of voxels are tested throughout the brain, followed by a correction for multiple comparisons. Please click here to view a larger version of this figure.
This protocol follows the guidelines of our institutions human research ethics committee.
1. Collection of Scans and Clinical Data
2. Conversion of DICOM Images to Nifti Files
3. Infarct Segmentation
Scan type | Time window after stroke | Infarct properties | Reference scan | Pitfalls |
CT | >24 h | Acute: hypodense | - | - Fogging phase |
Chronic: hypodense cavity with CSF and less hypodense rim | - Hemorrhagic transformation | |||
DWI | <7 days | Hyperintense | ADC: typically hypointense | - T2 shinethrough |
- High DWI signal near interfaces between air and bone/tissue | ||||
FLAIR | >48 h | Acute: hyperintense | Acute: DWI/ADC, T1 (isointense or hypointense) | - White matter hyperintensities |
Chronic: hypointense or isointense (cavity), hyperintense rim | Chronic: T1 (hypointense cavity with CSF characteristics). | - Lacunes |
Table 1: Summary of criteria for infarct segmentation for different scan types.
4. Registration to Standard Space
5. Review Registration Results
6. Manually Correct Registration Errors
7. Preparing Data for Lesion-symptom Mapping
Exemplar cases of brain infarct segmentations on CT (Figure 3), DWI (Figure 5), and FLAIR (Figure 6) images, and subsequent registration to the MNI-152 template are provided here. The registration results shown in Figure 3B and Figure 5C were not entirely successful, as there was misalignment near the frontal horn of the ventricle. The regis...
LSM is a powerful tool to study the functional architecture of the human brain. A crucial step in any lesion-symptom mapping study is the preprocessing of imaging data, segmentation of the lesion and registration to a brain template. Here, we report a standardized pipeline for lesion segmentation and registration for the purpose of lesion-symptom mapping. This method can be performed with freely available image processing tools, can be used to process both CT and structural MRI scans, and covers the entire process of pre...
The authors disclose no conflicts of interest.
The work of Dr. Biesbroek is supported by a Young Talent Fellowship from the Brain Center Rudolf Magnus of the University Medical Center Utrecht. This work and the Meta VCI Map consortium are supported by Vici Grant 918.16.616 from ZonMw, The Netherlands, Organisation for Health Research and Development, to Geert Jan Biessels. The authors would like to thank Dr. Tanja C.W. Nijboer for sharing scans that were used in one of the figures.
Name | Company | Catalog Number | Comments |
dcm2niix | N/A | N/A | free download https://github.com/rordenlab/dcm2niix |
ITK-SNAP | N/A | N/A | free download www.itksnap.org |
MATLAB | MathWorks | N/A | Version 2015a or higher |
MRIcron | N/A | N/A | free download https://www.nitrc.org/projects/mricron |
RegLSM | N/A | N/A | free download www.metavcimap.org/support/software-tools |
SPM12b | N/A | N/A | free download https://www.fil.ion.ucl.ac.uk/spm/ |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone