Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Presented here is a protocol to build an automatic apparatus that guides a monkey to perform the flexible reach-to-grasp task. The apparatus combines a 3D translational device and turning table to present multiple objects in an arbitrary position in 3D space.
Reaching and grasping are highly-coupled movements, and their underlying neural dynamics have been widely studied in the last decade. To distinguish reaching and grasping encodings, it is essential to present different object identities independent of their positions. Presented here is the design of an automatic apparatus that is assembled with a turning table and three-dimensional (3D) translational device to achieve this goal. The turning table switches different objects corresponding to different grip types while the 3D translational device transports the turning table in 3D space. Both are driven independently by motors so that the target position and object are combined arbitrarily. Meanwhile, wrist trajectory and grip types are recorded via the motion capture system and touch sensors, respectively. Furthermore, representative results that demonstrate successfully trained monkey using this system are described. It is expected that this apparatus will facilitate researchers to study kinematics, neural principles, and brain-machine interfaces related to upper limb function.
Various apparatuses have been developed to study the neural principles underlying reaching and grasping movement in non-human primate. In reaching tasks, touch screen1,2, screen cursor controlled by a joystick3,4,5,6,7, and virtual reality technology8,9,10 have all been employed to present 2D and 3D targets, respectively. To introduce different grip types, differently shaped objects fixed in one position or rotating around an axis were widely used in the grasping tasks11,12,13. An alternative is to use visual cues to inform subjects to grasp the same object with different grip types14,15,16,17. More recently, reaching and grasping movements have been studied together (i.e., subjects reach multiple positions and grasp with different grip types in an experimental session)18,19,20,21,22,23,24,25,26,27,28,29. Early experiments have presented objects manually, which inevitably lead to low time and spatial precision20,21. To improve experimental precision and save manpower, automatic presentation devices controlled by programs have been widely used. To vary the target position and grip type, experimenters have exposed multiple objects simultaneously, but the relative (or absolute) position of targets and the grip types are bound together, which causes rigid firing patterns through long-term training22,27,28. Objects are usually presented in a 2D plane, which limits the diversity of reaching movement and neural activity19,25,26. Recently, virtual reality24 and robot arm23,29 have been introduced to present objects in 3D space.
Presented here are detailed protocols for building and using an automated apparatus30 that can achieve any combination of multiple target positions and grip types in 3D space. We designed a turning table to switch objects and 3D translational device to transport the turning table in 3D space. Both the turning table and translational device are driven by independent motors. Meanwhile, the 3D trajectory of subject’s wrist and neural signals are recorded simultaneously throughout the experiment. The apparatus provides a valuable platform for the study of upper limb function in the rhesus monkey.
All behavioral and surgical procedures conformed to the Guide for the Care and Use of Laboratory Animals (China Ministry of Health) and were approved by the Animal Care Committee at Zhejiang University, China.
1.Assembling the 3D translational device
2. Assembling the turning table
3. Setup of the control system
4. Preparation of the experimental session
The size of complete workspace of the apparatus is 600 mm, 300 mm, and 500 mm in x-, y-, and z-axes, respectively. The maximum load of the 3D translational device is 25 kg, while the turning table (including the stepping motor) is weighted 15 kg and can be transported at a speed of up to 500 mm/s. The kinematic precision of the 3D translational device is less than 0.1 mm and the noise of the apparatus is less than 60 dB.
To demonstrate the utility of the system, the mon...
The behavioral apparatus is described here enables a trial-wise combination of different reaching and grasping movements (i.e., the monkey can grasp differently shaped objects in any arbitrary 3D locations in each trial). This is accomplished through the combination of a custom turning table that switches different objects and a linear translational device that transports the turning table to multiple positions in 3D space. In addition, the neural signals from the monkey, trajectory of wrist, and hand shapes were able to...
The authors have nothing to disclose.
We thank Mr. Shijiang Shen for his advice on apparatus design and Ms. Guihua Wang for her assistance with animal care and training. This work was supported by National Key Research and Development Program of China (2017YFC1308501), the National Natural Science Foundation of China (31627802), the Public Projects of Zhejiang Province (2016C33059), and the Fundamental Research Funds for the Central Universities.
Name | Company | Catalog Number | Comments |
Active X-rail | CCM Automation technology Inc., China | W50-25 | Effective travel, 600 mm; Load, 25 kg |
Active Y-rail | CCM Automation technology Inc., China | W60-35 | Effective travel, 300 mm, Load 35 kg |
Active Z-rail | CCM Automation technology Inc., China | W50-25 | Effective travel, 500 mm; Load 25 kg |
Bearing | Taobao.com | 6004-2RSH | Acrylic |
Case | Custom mechanical processing | TT-C | Acrylic |
Connecting ring | CCM Automation technology Inc., China | 57/60-W50 | |
Connecting shaft | CCM Automation technology Inc., China | D12-700 | Diam., 12 mm;Length, 700 mm |
Diaphragm coupling | CCM Automation technology Inc., China | CCM 12-12 | Inner diam., 12-12mm |
Diaphragm coupling | CCM Automation technology Inc., China | CCM 12-14 | Inner diam., 14-12mm |
Electric slip ring | Semring Inc., China | SNH020a-12 | Acrylic |
Locating bar | Custom mechanical processing | TT-L | Acrylic |
Motion capture system | Motion Analysis Corp. US | Eagle-2.36 | |
Neural signal acquisition system | Blackrock Microsystems Corp. US | Cerebus | |
NI DAQ device | National Instruments, US | USB-6341 | |
Object | Custom mechanical processing | TT-O | Acrylic |
Passive Y-rail | CCM Automation technology Inc., China | W60-35 | Effective travel, 300 mm; Load 35 kg |
Passive Z-rail | CCM Automation technology Inc., China | W50-25 | Effective travel, 500 mm; Load 25 kg |
Pedestal | CCM Automation technology Inc., China | 80-W60 | |
Peristaltic pump | Longer Inc., China | BT100-1L | |
Planetary gearhead | CCM Automation technology Inc., China | PLF60-5 | Flange, 60×60 mm; Reduction ratio, 1:5 |
Right triangle frame | CCM Automation technology Inc., China | 290-300 | |
Rotator | Custom mechanical processing | TT-R | Acrylic |
Servo motor | Yifeng Inc., China | 60ST-M01930 | Flange, 60×60 mm; Torque, 1.91 N·m; for Y- and Z-rail |
Servo motor | Yifeng Inc., China | 60ST-M01330 | Flange, 60×60 mm; Torque, 1.27 N·m; for X-rail |
Shaft | Custom mechanical processing | TT-S | Acrylic |
Stepping motor | Taobao.com | 86HBS120 | Flange, 86×86 mm; Torque, 1.27 N·m; Driving turning table |
Touch sensor | Taobao.com | CM-12X-5V | |
Tricolor LED | Taobao.com | CK017, RGB | |
T-shaped connecting board | CCM Automation technology Inc., China | 110-120 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone