JoVE Logo

Zaloguj się

Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.

W tym Artykule

  • Podsumowanie
  • Streszczenie
  • Wprowadzenie
  • Protokół
  • Wyniki
  • Dyskusje
  • Ujawnienia
  • Podziękowania
  • Materiały
  • Odniesienia
  • Przedruki i uprawnienia

Podsumowanie

Herein, we present a three-dimensional printing guide template for percutaneous vertebraplasty. A patient with a T11 vertebral compression fracture was selected as a case study.

Streszczenie

Percutaneous vertebroplasty (PVP) is considered an effective treatment for the back pain caused by osteoporotic vertebral compression fracture. The accuracy of PVP mainly depends on the surgeons' experience and multiple fluoroscopes during a traditional procedure. Puncture related complications were reported all over the world. To make the surgical procedure more precise and decrease the rate of puncture-related complications, our team applied a three-dimensional printing guide template to PVP to modify the traditional procedure. This protocol introduces how to model target vertebrae DICOM imaging data into three-dimensions in the software, how to simulate operation in this 3-D model, and how to use all of the surgical data to reconstruct a patient specific template for application. Using this template, surgeons can identify suitable puncture points accurately to improve the accuracy of the operation. The whole protocol includes: 1) diagnosis of the osteoporotic vertebral compression fracture; 2) acquisition of CT imaging of the target vertebra; 3) simulation of the operation in the software; 4) design and fabrication of the 3-D printing guide template; and 5) application of the template into an operation procedure.

Wprowadzenie

As the most common type fracture among all kinds of osteoporotic fractures, osteoporotic vertebral compression fracture (OVCF) is a highly concerning clinical problem nowadays. As current guidelines recommend, percutaneous vertebroplasty is one of the most effective minimally invasive methods to clinically treat osteoporotic vertebral compression fractures1.

Traditionally, surgeons perform percutaneous vertebroplasty guided by a C-arm fluoroscope to treat a vertebral compression fracture to restore the compressed vertebral body and relieve early-stage pain2. Even experienced surgeons make mistakes in confirming suitable puncturing points by simply relying on their personal experience. This operation could cause some puncture-related complications (e.g., cement leakage into surrounding tissues, nerve root injury, intra-spinal hematoma, etc.3,4,5); moreover, almost 50% of patients have local complications from traditional PVP with 95% of complications coming from cement leakage into surrounding tissue or embolization of paravertebral veins6. With the emergence of precision surgery, a 3-D printing guide template has been used in many spinal surgery operations7 because it can enhance the procedural accuracy, decreasing the difficulties and minimizing the operational risks. Here, we apply a 3-D printing guide template into the PVP to make the surgical procedure more precise and to decrease the rate of puncture-related complications. Compared with the traditional method, operations assisted by the 3D printing guide template have 1) increased surgical puncture accuracy, 2) minimized the radiation exposure during the operation, 3) shortened the surgical procedure time, and 4) decreased the probability of puncture-related complications.

Protokół

The present study was approved by the ethics committee of Beijing Friendship Hospital Capital Medical University.

1. Diagnosis of the osteoporotic vertebral compression fracture (OVCF) by X-ray fluoroscopy, magnetic resonance image (MRI), bone scintigraphy, and symptoms

  1. Identify patients who have OVCF by older patients with back pain, tenderness in the spinous process, paraspinal muscles at back, etc.
  2. Use posterioanterior X-ray fluoroscopy to check if patient has vertebral compression fracture.
  3. Use an MRI to diagnosis whether a patient has a newly onset vertebral compression fracture, and determine the target compressed vertebrae. For patients who cannot undergo the MRI, use bone scintigraphy.
  4. Order PVP treatment for the patient who has an acute vertebral compression fracture and record the Visual Analogue Scale (VAS) score and Oawestry Disability Index (ODI)8.
    NOTE: There are a few criteria for inclusion: 1) vertebra fractured patient whether having history of a low-energy trauma or not; 2) no history or evidence of metabolic bone disease or cancer; 3) VAS score ≥ 7; 4) diagnosis as vertebral fracture by X-ray, MRI or bone scintigraphy.

2. Preoperative localization of target vertebra

  1. Before the operation, conduct prone computer tomography on the patient with three radiopaque markers placed in the midline of patient's back skin at the compressed vertebral level. While pressing the most painful part, confirm the target area by x-ray fluoroscopy and a physical examination on the patient's back.
  2. Before the prone computer tomography scan, put a gradienter on the patient's back just inferior to the fixed markers. Record the patient's body position and then remove it. Have the patient stay in the same position during surgery.
  3. Save the CT images (1 mm scanning layer thickness, 1 mm layer spacing, and either 90 slices (conventional scanning) or 400 slices (thin slice scanning) in a DICOM format. Put a cotton pad on the patient's back to ensure that the markers remain until the operation.

3. Simulating the percutaneous vertebroplasty procedure in the computer software

  1. Export the CT images in DICOM format into medical imaging processing software (e.g., MIMICS) and select the target slices to reconstruct the compressed vertebra.
  2. Select Threshold Segmentation to adjust the threshold range for the target vertebra from 125-3071H and create a mask. Press Duplicate Mask to make two masks: Mask A and Mask B.
  3. Click Mask Edit to erase the target vertebra in Mask A. Then click Boolean Operations to form a new Mask C by using Mask B to minus Mask A. Press Calculate 3D from Mask to reconstruct the target vertebra.
  4. Simulate PVP via a bilateral transpedicular approach in the software. First, define the Medcad cylinder in the software as the puncture needle model. Define the cylinders as the same length and radius as the puncture needle (a length of 125 mm and a radius of 1.25 mm).
  5. Simulate the entry point, the entry angle (head inclination angle and abduction angle orientation), and the puncture needle depth for a real PVP with the 3-D views of the target vertebra.
  6. Adjust the puncture needles to its ideal position by using the Move and Rotate function. Keep needle trajectories consistent with these principles: 1) the puncture needles can extrapolate through the pedicle, preferably in its superior half; 2) the ideal location of the tips is at the point within the anterior one third of the vertebral body on the lateral view.

4. Three-dimensional printing guide template

  1. Save all of the 3D template data and send it in the MCS format to a three-dimensional printing company.
  2. Convert MCS format data into a STL format and design the template using software. Reconstruct the base, which must cling to patient's back skin, reconstruct the trajectory canal according to all of the parameters, including skin entry points, entry angles and the depth of the two needles' trajectory, print two same templates out for the operation.
    NOTE: The guide template is made from polylactic acid, which can be sterilized and by low temperature steam disinfection.

5. Applying the three-dimensional printing guide template to assist the real PVP operation

  1. Make the patient lie prone on the operation table as for the CT scanning in accordance with the gradienter record. Measure the distance of the three radiopaque markers and draw the outline of the three markers to match the template with the target location.
  2. Match a skin template along with the skin outline. Insert and press two swabs through the needle's trajectories on the template to mark the insertion points on the skin. Then remove the template and draw the points as point A and B.
  3. Remove the template and disinfect the skin. Drape the area and put the tips of two puncture needles at the insertion points (point A and B). Then, use the anteroposterior view of C-arm fluoroscopy to confirm whether the puncture points determined by template are feasible.
  4. Give the patient local anesthesia by injecting a 5 mL mixture of 1% lidocaine and 1% ropavicaine at each puncture point. Fix another sterilized template on the patient's back by sterilized film.
  5. Tap the two needles into the target vertebra slightly via insertions through the guiding cylinders of the template. Verify with the C-arm fluoroscope that the trajectories are suitable for insertion. Make sure that the punctuation is within the pedicles and then tap the needles to advance further until the end of the trajectory.
  6. When the whole needles are completely inserted into the guiding cylinders, verify with the C-arm fluoroscope that the needle tips have reached their ideal location.
  7. Inject bone cement into the vertebral body through the needles. Inject 2 mL of bone cement via each trajectory for a total of 4 mL of bone cement to the vertebra.
  8. Finally, use fluoroscopy to check the distribution of the bone cement within the vertebral body by anteroposterior and lateral views. Stitch the insertions.

Wyniki

Acquisition of CT images and digital modeling were performed in the hospital, while 3-D printing was performed in a 3-D printing company. Thirty minutes were needed to reconstruct the 3-D model from the CT images for the 3-D printing, and the 3-D printing company needed about 6 hours to print 2 guide templates out and send to the hospital.

The pre-operation images of the target vertebra of the patient were shown in

Dyskusje

Percutaneous vertebroplasty (PVP) is considered one of the best methods to treat osteoporotic vertebral compression fracture9 due to some distinct advantages: it is minimally invasive; there is less bleeding, and recovery is rapid. Traditional PVP is primarily guided by a C-arm fluoroscope that requires repeated fluoroscopy to determine safe and ideal puncture points, puncture angles and orientations, which increases the intraoperative radiation dosage and the operation time10

Ujawnienia

The authors have no conflict of interest regarding any drugs, materials, or devices described in this study.

Podziękowania

The study was funded by the Beijing Municipal Science & Technology Commission (No.Z181100001718078), China.

Materiały

NameCompanyCatalog NumberComments
X-ray machineCompany Philipsmachine
Magnetic resonance image machineCompany GEmachine
computer tomographyCompany GEmachine
HORI 3D printing machineCompany of Beijing Huitianwei Technology co. ltd.machine
Geomagic Design X3D Systems Companysoftware
Materialise Interactive Medical Image Control SystemMaterialise Companysoftware
VertePort needleStryker Companyoperation appliance
SpineplexStryker Companyoperation appliance
Percutaneous Cement Delivery SystemStryker Companyoperation appliance
Spirit Level PlusIOS App storegradientor

Odniesienia

  1. Orthopaedic Society of the Chinese Medical Association. Guidelines for the diagnosis and treatment of osteoporotic fractures. Chinese Journal of Orthopaedics. 37 (1), 1-10 (2017).
  2. Yi, H. J., Jeong, J. H., Im, S. B., Lee, J. K. Percutaneous vertebroplasty versus conservative treatment for one level thoracolumbar osteoporotic compression fracture: Results of an over 2-year follow-up. Pain Physician. 19 (5), (2016).
  3. Balkarli, H., Demirtas, H., Kilic, M., Ozturk, I. Treatment of osteoporotic vertebral compression fractures with percutaneous vertebroplasty under local anesthesia: clinical and radiological results. International Journal of Clinical & Experimental Medicine. 8 (9), 16287-16293 (2015).
  4. Woojin, C., Varkey, J. A., Jing, C., Hwan, B. J. A Review of Current Clinical Applications of Three Dimensional Printing in Spine Surgery. Asian Spine Journal. 12 (1), 171-177 (2018).
  5. Laredo, J. D., Hamze, B. Complications of percutaneous vertebroplasty and their prevention. Skeletal Radiology. 33 (9), 493-505 (2004).
  6. Saracen, A., Kotwica, Z. Complications of percutaneous vertebroplasty: An analysis of 1100 procedures performed in 616 patients. Medicine. 95 (24), e3850 (2016).
  7. Park, H. J., Wang, C., Choi, K. H., Kim, H. N. Use of a life-size three-dimensional-printed spine model for pedicle screw instrumentation training. Journal of Orthopaedic Surgery and Research. 13 (1), 86 (2018).
  8. Gu, Y. F., et al. Percutaneous vertebroplasty and interventional tumor removal for malignant vertebral compression fractures and/or spinal metastatic tumor with epidural involvement: a prospective pilot study. Journal of Pain Research. 10, 211-218 (2017).
  9. Ruiz, S. F., et al. Comparative review of vertebroplasty and kyphoplasty. World Journal of Radiology. 6 (6), 329-343 (2014).
  10. Cannavale, A., et al. Percutaneous vertebroplasty with the rotational fluoroscopy imaging technique. Skeletal Radiology. 43 (11), 1529-1536 (2014).
  11. Ringer, A. J., Bhamidipaty, S. V. Percutaneous access to the vertebral bodies: a video and fluoroscopic overview of access techniques for trans-, extra-, and infrapedicular approaches. World Neurosurgery. 80 (3-4), 428-435 (2013).
  12. Kaneyama, S., et al. A novel screw guiding method with a screw guide template system for posterior C-2 fixation. Neurosurgery Spine. 21 (2), 231-238 (2014).
  13. Sugawara, T., et al. Multistep pedicle screw insertion procedure with patient-specific lamina fit-and-lock templates for the thoracic spine. Neurosurgery Spine. 19 (2), 185-190 (2013).
  14. Li, J., Lin, J. S., Yang, Y., Xu, J. C., Fei, Q. 3-Dimensional printing guide template assisted percutaneous vertebroplasty: Technical note. Journal of Clinical Neuroscience. 52, 159-164 (2018).

Przedruki i uprawnienia

Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE

Zapytaj o uprawnienia

Przeglądaj więcej artyków

Three dimensional PrintingGuide TemplatePercutaneous VertebroplastyPVP TechniqueSurgical PlanningPuncture AccuracySurgical Time ReductionRadiation ExposureNovice SurgeonsX ray FluoroscopyComputed TomographyDICOM FormatMedical Imaging ProcessingThreshold Segmentation3D ReconstructionBilateral Transpedicular Approach

This article has been published

Video Coming Soon

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone