Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
This protocol describes the process of solving a microscopic traffic problem with simulation. The whole process contains a detailed description of data collection, data analysis, simulation model build, simulation calibration, and sensitive analysis. Modifications and troubleshooting of the method are also discussed.
Traditional U-turn designs can improve operational features obviously, while U-turn diversions and merge segments still cause traffic congestion, conflicts, and delays. An exclusive spur dike U-turn lane design (ESUL) is proposed here to solve the disadvantages of traditional U-turn designs. To evaluate the operation performance of ESUL, a traffic simulation protocol is needed. The whole simulation process includes five steps: data collection, data analysis, simulation model build, simulation calibration, and sensitive analysis. Data collection and simulation model build are two critical steps and are described later in greater detail. Three indexes (travel time, delay, and number of stops) are commonly used in the evaluation, and other parameters can be measured from the simulation according to experimental needs. The results show that the ESUL significantly diminishes the disadvantages of traditional U-turn designs. The simulation can be applied to solve microscopic traffic problems, such as in single or several adjacent intersections or short segments. This method is not suitable for larger scale road networks or evaluations without data collection.
Some traffic problems, such as traffic congestion at an intersection or short segment, can be solved or improved by optimizing the road design, change signal timing, traffic management measurements, and other transportation technologies1,2,3,4. These improvements either have a positive or negative effect on traffic flow operations compared to the original situations. The changes in traffic operations can be compared in traffic simulation software rather than in actual reconstruction of the intersection or segment. The traffic simulation method is a quick and cheap option when one or more improvement plans are proposed, especially when comparing different improvement plans or evaluating the effectiveness of improvements. This article introduces the process of solving a traffic problem with simulation by evaluating traffic flow operational features of an exclusive spur dike U-turn lane design5.
U-turn movement is a widespread traffic demand that requires a U-turn median opening on the road, but this has been debated. Designing a U-turn opening can cause traffic congestion, while closing the U-turn opening can cause detours for the U-turn vehicles. Two movements, U-turn vehicles and direct left-turn vehicles, require a U-turn opening and cause traffic delays, stops, or even accidents. Some technologies have been proposed to solve the disadvantages of U-turn movements, such as signalization6,7, exclusive left turn lanes8,9, and autonomous vehicles10,11. Improvement potential still exists on U-turn issues, due to the above solutions having restrictive applications. A new U-turn design may be a better solution under certain conditions and be able to address existing problems.
The most popular U-turn design is the median U-turn intersection (MUTI)12,13,14,15, as shown in Figure 1. A significant limitation of the MUTI is that it cannot distinguish U-turn vehicles from passing vehicles and that traffic conflict still exists16,17. A modified U-turn design called the exclusive spur dike U-turn lane (ESUL; Figure 2) is proposed here and aims to diminish traffic congestion by introducing an exclusive U-turn lane on both sides of a median. The ESUL can significantly reduce travel time, delays, and the number of stops due to its channelization of the two flows.
To prove that the ESUL is more efficient than the normal MUTI, a rigorous protocol is needed. The ESUL cannot be actually constructed before a theoretical model; thus, simulation is needed18. Using traffic flow parameters, some key models have been used in simulation research19, such as driving behavior models20,21, car following models22,23, U-turn models4, and lane change models21. The accuracy of traffic flow simulations is widely accepted16,24. In this study, both the MUTI and ESUL are simulated with collected data to compare improvements made by the ESUL. To guarantee accuracy, a sensitive analysis of the ESUL is also simulated, which can apply to many different traffic situations.
This protocol presents experimental procedures for solving real traffic problems. The methods for traffic data collection, data analysis, and analysis of overall efficiency of traffic improvements are proposed. The procedure can be summarized in five steps: 1) traffic data collection, 2) data analysis, 3) simulation model build, 4) calibration of simulation model, and 5) sensitivity analysis of operational performance. If any one of these requirements in the five steps is not met, the process is incomplete and insufficient to prove effectiveness.
1. Preparation of the equipment
2. Testing of the equipment
3. Data collection
4. Data analysis
5. Building the simulation model
6. Simulation model calibration
7. Sensitivity analysis
NOTE: Sensitivity analysis process is shown in Figure 8b. The collected data can only reflect its own performance (Figure 9, Table 4, Table 5, and Table 6). To prove the effectiveness under all situations, all possible traffic situations and different combinations were input into the simulation model to ensure that all situations are covered between the MUTI and ESUL (Figure 10 and Table 7).
Figure 2 shows the illustration of the ESUL for U-turn median opening. WENS mean four cardinal directions. The main road has six lanes with two directions. Greenbelts divide non-motorized lane on both sides and divide the two directions in the middle. Flow 1 is the east to west through traffic, flow 2 is east to east U-turn flow, flow 3 is west to east through traffic, and flow 4 is west to west U-turn traffic.
In this article, the procedure of solving a traffic problem at an intersection or short segment using simulation was discussed. Several points deserve special attention and are discussed in more detail here.
Field data collection is the first thing deserving attention. Some requirements for data collection location are as follows: 1) Finding a suitable location for data collection. The location should be similar to the road geometric shape in the study, which is the premise of data collection....
The authors have nothing to disclose.
The authors would like to acknowledge the China Scholarship Council for partially funding this work was with the file No. 201506560015.
Name | Company | Catalog Number | Comments |
Battery | Beijing Aozeer Technology Company | LPB-568S | Capacity: 3.7v/50000mAh. Two ports, DC 1 out:19v/5A (max), for one laptop. DC 2 out:12v/3A (max), for one radar. |
Battery Cable | Beijing Aozeer Technology Company | No Catalog Number | Connect one battery with one laptop. |
Camera | SONY | a6000/as50r | The videos shot by the cameras were 1080p, which means the resolution is 1920*1080. |
Camera Tripod | WEI FENG | 3560/3130 | The camera tripod height is 1.4m. |
Laptop | Dell | C2H2L82 | Operate Windows 7 basic system. |
Matlab Software | MathWorks | R2016a | |
Radar | Beijing Aozeer Technology Company | SD/D CADX-0037 | |
Radar Software | Beijing Aozeer Technology Company | Datalogger | |
Radar Tripod | Beijing Aozeer Technology Company | No Catalog Number | Corresponding tripods which could connect with radars, the height is 2m at most. |
Reflective Vest | Customized | No Catalog Number | |
VISSIM Software | PTV AG group | PTV vissim 10.00-07 student version |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone