Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
We present a non-lethal and automated mechanism to collect pollen from bumble bee (Bombus) workers returning to a hive. Instructions for producing, preparing, installing and using the devices are included. By using 3D-printed objects, modification to the design was timely, efficient and allowed for quick turnaround for testing.
To verify the plant sources from which bumble bees forage for pollen, individuals must be collected to remove their corbicular pollen loads for analysis. This has traditionally been done by netting foragers at nest entrances or on flowers, chilling the bees on ice, and then removing the pollen loads from the corbiculae with forceps or a brush. This method is time and labor intensive, may alter normal foraging behavior, and can result in stinging incidents for the worker performing the task. Pollen traps, such as those used on honey bee hives, collect pollen by dislodging corbicular pollen loads from the legs of workers as they pass through screens at the nest entrance. Traps can remove a large quantity of pollen from returning forager bees with minimal labor, yet to date no such trap is available for use with bumble bee colonies. Workers within a bumble bee colony can vary in size making size selection of entrances difficult to adapt this mechanism to commercially reared bumble bee hives. Using 3D printing design programs, we created a pollen trap that successfully removes the corbicular pollen loads from the legs of returning bumble bee foragers. This method significantly reduces the amount of time required by researchers to collect pollen from bumble bee foragers returning to the colony. We present the design, results of pollen removal efficiency tests, and suggest areas of modifications for investigators to adapt traps to a variety of bumble bee species or nest box designs.
Bumble bees (Bombus spp.) are large robust insects that are found across the temperate, alpine, and arctic regions of the world1. They are important to plant communities and provide important pollination service for the agricultural crops that they visit2. Recent declines in the abundance and distribution of several species has brought their importance as pollinators to the forefront of public awareness3. Researchers have identified several stressors that are likely contributing to population declines including a lack of diverse and abundant floral resources on which bumble bees forage4. Identifying which plant species bumble bees forage from allows researchers and land managers to understand how bumble bees may be responding to changes in resource availability, competition, and anthropogenic disturbances5,6.
Studies investigating the pollen foraging preferences of bumble bees are often conducted by researchers catching individual bees foraging at flowers, and then removing the corbicular pollen loads from specimens for further processing and identification7,8,9,10. While this method provides insight into how a species or an assemblage of bumble bee species utilizes the resources in an area7, it is time intensive and potential differences in preferences among hives cannot be discerned without additional molecular analyses to identify colony of origin of the foraging bee11.
For some studies of foraging dynamics, it is desired to conduct the studies at individual colonies; however, wild bumble bee nests are generally located underground or at ground level making them difficult to locate12. Commercially produced bumble bee hives provide researchers greater access and better experimental control and the removal of pollen off workers is still primarily conducted by capturing foragers as they return to the hive and manually removing their corbicular pollen loads13,14. The removal of pollen by hand from the corbicula of a bee is time intensive with a low hourly yield of pollen especially at hive entrances where the rate of returning pollen foragers may be low. Additionally, manually removing pollen from bees can result in stings from disturbed workers.
Pollen traps have been used for experimental removal of pollen from honey bees for decades15; yet, a passive method for removing pollen from bumble bees has not been developed. The primary obstacle in developing a mechanism to remove pollen from returning forager bumble bees is the large variation of worker sizes that exist in a bumble bee colony16. Honey bee pollen traps are effective largely because honey bee worker size does not vary much. Additionally, these traps require only minor manipulations after installation and don’t require bees to be sacrificed17. This is achieved using screens or plastic surfaces that dislodge the pollen off of the hind legs of workers as they return to the hive. These traps remove only a portion of the pollen loads from returning foragers and the various designs of those result in varied efficiencies at pollen collection. As the pollen is removed from the bee legs, it falls through a screen and into a collection basin to which the bees have no access, so that the researcher can remove it with only minor disturbance to the hive.
The purpose of the present study is to adapt the techniques used for collecting pollen from honey bee hives and apply them to bumble bee nests using 3D printed structures and test the trap designs on colonies of Bombus huntii. The design process followed the assumptions that the traps should be inexpensive to produce, adaptable to a variety of bumble bee species, cause minimal harm or disturbance to the bees, and that the rate of pollen removal should exceed hand collection of pollen. Three-dimensional printing technology is versatile, easily accessible, and a cost-effective tool allowing researchers to replicate and modify objects for specific purposes18. The technique presented here instructs the user to build pollen traps and attach them onto commercially available bumble bee colonies. The traps are not designed to be use with wild colonies. These traps passively remove the corbicular pollen loads from the hind legs of pollen carrying bumble bees as they return to their nest boxes.
1. Print pollen trap structures
2. Pollen trap assembly
3. Bumble bee colony preparation
4. Deployment of nests
5. Pollen collection
Eight different pollen filter designs were tested to determine their efficacy and efficiency at removing corbicular pollen loads from returning bumble bee workers. All designs were successful at removing at least of one corbicular pollen load from a returning forager. However, some were found to slow workers from leaving or entering the hive or failed to remove pollen loads (Table 1). Pollen traps with various filters were tested sequentially on 4 laboratory reared colonies of B. huntii Greene f...
Collection of pollen from bumble bee colony entrances can allow for a variety of ecological and agricultural studies. Identifying the floral sources from which bumble bees collect pollen provides valuable information and insight into the diversity of plants that contribute to a colony’s overall diet19. Identifying the pollen source has implications for both agricultural production and studies of ecosystem services in wild lands12,20....
The authors have nothing to disclose.
We thank Colby Carpenter and Spencer Mathias for their assistance in 3D printing design. We thank Ellen Klinger for assistance in producing the photographic figures and Jonathan B. Koch for providing assistance with revisions. Funding was provided by the USDA-ARS-Pollinating Insect Biology, Management, and Systematics Research Unit.
Name | Company | Catalog Number | Comments |
MakerBot Replicator+ | MakerBot | Model PABH65 | |
MakerBot Tough Material | PLA Filament | various colors | |
Nest Box | Biobest | Not sold publicly without bee purchase |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone