Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
We describe the analysis of continuous-wave functional near-infrared spectroscopy experiment using a block design with a sensorimotor task. To increase the reliability of the data analysis, we used the qualitative general linear model-based statistical parametric mapping and the comparative hierarchical mixed models for multi-channels.
Neuroimaging studies play a pivotal role in the evaluation of pre- vs. post-interventional neurological conditions such as in rehabilitation and surgical treatment. Among the many neuroimaging technologies used to measure brain activity, functional near-infrared spectroscopy (fNIRS) enables the evaluation of dynamic cortical activities by measuring the local hemoglobin levels similar to functional magnetic resonance imaging (fMRI). Also, due to lesser physical restriction in fNIRS, multiple variants of sensorimotor tasks can be evaluated. Many laboratories have developed several methods for fNIRS data analysis; however, despite the fact that the general principles are the same, there is no universally standardized method. Here, we present the qualitative and comparative analytic methods of data obtained from a multi-channel fNIRS experiment using a block design. For qualitative analysis, we used a software for NIRS as a mass-univariate approach based on the generalized linear model. The NIRS-SPM analysis shows qualitative results for each session by visualizing the activated area during the task. In addition, the non-invasive three-dimensional digitizer can be used to estimate the fNIRS channel locations relative to the brain. To corroborate the NIRS-SPM findings, the amplitude of the changes in hemoglobin levels induced by the sensorimotor task can be statistically analyzed by comparing the data obtained from two different sessions (before and after intervention) of the same study subject using a multi-channel hierarchical mixed model. Our methods can be used to measure the pre- vs. post-intervention analysis in a variety of neurological disorders such as movement disorders, cerebrovascular diseases, and neuropsychiatric disorders.
Neurorehabilitation plays an important role in the functional recovery following sensorimotor disturbance. To clarify the mechanisms of neuroplasticity-associated functional recovery, various neuroimaging technologies have been used, such as functional magnetic resonance imaging (fMRI), positron emission tomography (PET), electroencephalography (EEG), and functional near-infrared spectroscopy (fNIRS). Different imaging modalities have different advantages and disadvantages. Although the fMRI is the most typical device, it is affected by magnetic fields, has a high cost, high physical restriction, and limited sensorimotor tasks1,2,3,4. The fNIRS device stands out as a noninvasive optical neuroimaging and has a relatively lower spatial resolution, but it has a better temporal resolution than fMRI4. fNIRS is suitable when verifying treatment effects because it compares the pre- versus post-intervention effects, has dynamic motor tasks, is portable, and functions more in natural environments than fMRI1,2,4. NIRS has been reported to be more suitable in the fields of cerebrovascular disease, epileptic disorders, severe brain injury, Parkinson's disease, and cognitive impairment1,5. With regard to sensorimotor tasks, it is widely used in gait and standing balance6,7,8, upper limb function (hand grasping, finger tapping)8,9, complex motor skill training10,11, robotics12,13,14,15, and brain-computer interface16,17,18. The fNIRS is based on the principles of optical neuroimaging and neurovascular coupling, which measure cortical metabolic activity, increased blood flow, and consequently cortical activity as secondary signals19. fNIRS signals have been reported to have strong correlations with signals of blood oxygen level-dependent fMRI20. A continuous-wave fNIRS uses the modified Beer-Lambert law to determine the changes in oxygenated hemoglobin (HbO2) and deoxygenated hemoglobin (HHb) cortical concentration levels based on measured changes in broadband near-infrared light attenuation21,22. Because it was not possible to measure the differential path-length factor (DPF) using the continuous-wave NIRS system, we assumed that the DPF was constant and that hemoglobin signal changes were denoted in arbitrary units of millimole-millimeter (mM x mm)2,18.
The fNIRS experiments need to select the most adequate methods including the probe settings, the experiment designs, and the analysis methods. Regarding the probe setting, the international 10-20 method used in EEG measurement is the setting standard used by many researchers in neuroimaging. In recent years, coordinate settings based on the standard brain on the basis of Montreal Neurological Institute (MNI) coordinates have been used. The experiment uses a block design, generally used for sensorimotor tasks, and an event-related design. This is a method of comparing changes in hemoglobin concentration at rest and during tasks; HbO2 concentration levels increase and HHb concentration levels decrease with changes in cerebral blood flow associated with task-dependent cortical activity. Although there are various analysis methods, the NIRS-SPM free software enables an analysis similar to the statistical parametric mapping (SPM) of fMRI. The treatment of NIRS data uses a mass-univariate approach based on the general linear model (GLM). When performing task-dependent brain activity analysis, the fNIRS measurements can be affected by evoked or non-evoked neuronal activity and systemic physiological interferences (heart rate, blood pressure, breathing rate, and autonomic nervous system activity) in the cerebral and extracerebral compartment23. Therefore, pre-analysis processing, filtering, wavelet conversion, and principal component analysis are useful23. Regarding filtering and artifacts of the data processing using the NIRS-SPM, low-pass filtering9 and the wavelet minimum description length (Wavelet-MDL)24 detrending were used to overcome the motion or other sources of noise/artifact. For details of this analytic method, refer to the report of Ye et al.25. Although there are reports using only SPM, it is only a qualitative index by image analysis, and due to the low spatial resolution of NIRS, extreme caution is required for group analysis. Moreover, when the DPF is constant, numerical comparisons between channels and individuals should not be performed, but the difference in the changes in each channel can be verified. Based on the above conditions, in order to supplement the NIRS-SPM group analysis results, we used the original analysis method for multi-channel analysis after improving the accuracy of spatial registration. This multi-channel analysis compared the amplitude of the change in HbO2 and HHb levels between the rest and on-task periods at each channel before and immediately after treatment using hierarchical mixed models with fixed interventions (before or after), fixed periods (rest or on-task), and random individual effects.
In this way, there are several fNIRS measurement and analysis methods; however, no standard method has been established. In this paper, we introduce our methods, qualitative GLM-based statistical parametric mapping and the comparative multi-level hierarchical mixed model, to analyze data obtained from a multi-channel fNIRS experiment of pre- vs. post-intervention using a block design with sensorimotor tasks.
Access restricted. Please log in or start a trial to view this content.
This study was approved by the institutional review board (IRB) of the Fukuoka University, Japan (IRB No. 2017M017). Prior to participation, all patients provided written informed consent.
1. Preparation of the fNIRS experiment
NOTE: A multi-channel continuous-wave laser-based NIRS system for this experiment was used. The wavelengths of the near-infrared light were 780 nm, 805 nm, and 830 nm, and the sampling rate was set at 7.8 Hz. The time and spatial resolution (distances between the light emitter and detector probe) were 0.13 s and 3.0 cm, respectively.
2. Run the experiment
3. Qualitative GLM analysis using NIRS-SPM software
4. Multi-channel comparative analysis based on hierarchical mixed model
Access restricted. Please log in or start a trial to view this content.
Herein, we introduce the robot-assisted rehabilitation that our group is currently working on: the biofeedback effects on upper limb motor deficit in patients with acute stroke. We included 10 consenting stroke patients (mean age: 66.8 ± 12.0 years; two women and eight men) who were admitted to our hospital. At the subacute stroke stage, more than 2 weeks after the onset, we evaluated the motor-related cortical activity of these patients using an fNIRS system before and immediately a...
Access restricted. Please log in or start a trial to view this content.
In our group analytic methods for fNIRS, in addition to performing an imaging analytic method by qualitative t-statistic mappings, we compared pre- vs. post-intervention (robot-assisted exercise) using the comparative multichannel analysis. For qualitative analysis, we used the NIRS-SPM software as a mass-univariate approach based on the generalized linear model. The NIRS-SPM analysis shows qualitative results of each session by visualizing the activated area during the task. Moreover, the information of the non...
Access restricted. Please log in or start a trial to view this content.
The authors have no conflicts of interest relevant to this study to disclose.
This work was partly supported by the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research (C) 18K08956 and a fund from the Central Research Institute of Fukuoka University (No. 201045).
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
3D-digitizer software | TOPCON | - | NS-1000 software ver.1.50 |
NIRS system | Shimadzu | - | FOIRE-3000 |
Robot | CYBERDYNE | - | Single-joint type Hybrid Assitive Limb (HAL-SJ) |
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone