Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
This paper discusses how to build a brain-computer interface by relying on consumer-grade equipment and steady-state visually evoked potentials. For this, a single-channel electroencephalograph exploiting dry electrodes was integrated with augmented reality glasses for stimuli presentation and output data visualization. The final system was non-invasive, wearable, and portable.
The present work focuses on how to build a wearable brain-computer interface (BCI). BCIs are a novel means of human-computer interaction that relies on direct measurements of brain signals to assist both people with disabilities and those who are able-bodied. Application examples include robotic control, industrial inspection, and neurorehabilitation. Notably, recent studies have shown that steady-state visually evoked potentials (SSVEPs) are particularly suited for communication and control applications, and efforts are currently being made to bring BCI technology into daily life. To achieve this aim, the final system must rely on wearable, portable, and low-cost instrumentation. In exploiting SSVEPs, a flickering visual stimulus with fixed frequencies is required. Thus, in considering daily-life constraints, the possibility to provide visual stimuli by means of smart glasses was explored in this study. Moreover, to detect the elicited potentials, a commercial device for electroencephalography (EEG) was considered. This consists of a single differential channel with dry electrodes (no conductive gel), thus achieving the utmost wearability and portability. In such a BCI, the user can interact with the smart glasses by merely staring at icons appearing on the display. Upon this simple principle, a user-friendly, low-cost BCI was built by integrating extended reality (XR) glasses with a commercially available EEG device. The functionality of this wearable XR-BCI was examined with an experimental campaign involving 20 subjects. The classification accuracy was between 80%-95% on average depending on the stimulation time. Given these results, the system can be used as a human-machine interface for industrial inspection but also for rehabilitation in ADHD and autism.
A brain-computer interface (BCI) is a system allowing communication with and/or control of devices without natural neural pathways1. BCI technology is the closest thing that humanity has to controlling objects with the power of the mind. From a technical point of view, the system operation works by measuring induced or evoked brain activity, which could either be involuntarily or voluntarily generated from the subject2. Historically, research focused on aiding people with motor disabilities through BCI3, but a growing number of companies today offer BCI-based instrumentation for gaming4, robotics5, industry6, and other applications involving human-machine interaction. Notably, BCIs may play a role in the fourth industrial revolution, namely industry 4.07, where cyber-physical production systems are changing the interaction between humans and the surrounding environment8. Broadly speaking, the European project BNCI Horizon 2020 identified application scenarios such as replacing, restoring, improving, enhancing, or supplementing lost natural functions of the central nervous system, as well as the usage of BCI in investigating the brain9.
In this framework, recent technological advances mean brain-computer interfaces may be applicable for usage in daily life10,11. To achieve this aim, the first requirement is non-invasiveness, which is important for avoiding the risks of surgical intervention and increasing user acceptance. However, it is worth noting that the choice of non-invasive neuroimaging affects the quality of measured brain signals, and the BCI design must then deal with the associated pitfalls12. In addition, wearability and portability are required. These requirements are in line with the need for a user-friendly system but also pose some constraints. Overall, the mentioned hardware constraints are addressed by the usage of an electroencephalographic (EEG) system with gel-free electrodes6. Such an EEG-based BCI would also be low-cost. Meanwhile, in terms of the software, minimal user training (or ideally no training) would be desired; namely, it would be best to avoid lengthy periods for tuning the processing algorithm before the user can use the system. This aspect is critical in BCIs because of inter-subject and intra-subject non-stationarity13,14.
Previous literature has demonstrated that the detection of evoked brain potentials is robust with respect to non-stationarity and noise in signal acquisition. In other words, BCIs relying on the detection of evoked potential are termed reactive, and are the best-performing BCIs in terms of brain pattern recognition15. Nevertheless, they require sensory stimulation, which is probably the main drawback of such interfaces. The goal of the proposed method is, thus, to build a highly wearable and portable BCI relying on wearable, off-the-shelf instrumentation. The sensory stimuli here consist of flickering lights, generated by smart glasses, that are capable of eliciting steady-state visually evoked potentials (SSVEPs). Previous works have already considered integrating BCI with virtual reality either alone or in conjunction with augmented reality16. For instance, a BCI-AR system was proposed to control a quadcopter with SSVEP17. Virtual reality, augmented reality, and other paradigms are referred to with the term extended reality. In such a scenario, the choice of smart glasses complies with the wearability and portability requirements, and smart glasses can be integrated with a minimal EEG acquisition setup. This paper shows that SSVEP-based BCI also requires minimal training while achieving acceptable classification performance for low-medium speed communication and control applications. Hence, the technique is applied to BCI for daily-life applications, and it appears especially suitable for industry and healthcare.
The study was approved by the Ethical Committee of Psychological Research of the Department of Humanities of the University of Naples Federico II. The volunteers signed informed consent before participating in the experiments.
1. Preparing the non-invasive wearable brain - computer interface
2. Calibrating the SSVEP-based brain - computer interface
NOTE: Healthy volunteers were chosen for this study. Exclude subjects with a history of brain diseases. The involved subjects were required to have normal or corrected-to-normal vision. They were instructed to be relaxed during the experiments and to avoid unnecessary movements, especially of the head.
3. Assemble the final wearable and portable SSVEP-based interface
A possible implementation of the system described above is shown in Figure 1; this implementation allows the user to navigate in augmented reality through brain activity. The flickering icons on the smart glasses display correspond to actions for the application (Figure 1A), and, thus, these glasses represent a substitute for a traditional interface based on button presses or a touchpad. The efficacy of such an interaction i...
The proper functioning of the system involves two crucial aspects: SSVEP elicitation and signal acquisition. Aside from the specific devices chosen for the current study, SSVEP could be elicited with different devices providing a flickering light, though smart glasses are preferred to ensure wearability and portability. Analogously, further commercial electroencephalographs could be considered, but they would have to be wearable, portable, and involve a minimum number of dry electrodes to be user-friendly. Moreover, the ...
The authors have nothing to disclose.
This work was carried out as part of the ICT for Health project, which was financially supported by the Italian Ministry of Education, University and Research (MIUR), under the initiative Departments of Excellence (Italian Budget Law no. 232/2016), through an excellence grant awarded to the Department of Information Technology and Electrical Engineering of the University of Naples Federico II, Naples, Italy. The project was indeed made possible by the support of the Res4Net initiative and the TC-06 (Emerging Technologies in Measurements) of the IEEE Instrumentation and Measurement Society. The authors would like to also thank L. Callegaro, A. Cioffi, S. Criscuolo, A. Cultrera, G. De Blasi, E. De Benedetto, L. Duraccio, E. Leone, and M. Ortolano for their precious contributions in developing, testing, and validating the system.
Name | Company | Catalog Number | Comments |
Conductive rubber with Ag/AgCl coating | ab medica s.p.a. | N/A | Alternative electrodes – type 2 |
Earclip electrode | OpenBCI | N/A | Ear clip |
EEG-AE | Olimex | N/A | Active electrodes |
EEG-PE | Olimex | N/A | Passive electrode |
EEG-SMT | Olimex | N/A | Low-cost electroencephalograph |
Moverio BT-200 | Epson | N/A | Smart glasses |
Snap electrodes | OpenBCI | N/A | Alternative electrodes – type 1 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone