Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Here, we present the range analysis method to optimize the sample points generated by an orthogonal experimental design to ensure that fresh food can be stored in a vented box for a long time by regulating the airflow pattern.
This study aims to solve the problems of air flow chaos and poor performance in a vented box caused by the heterogeneous distribution of airflow through the design of the internal structure of the vented box with constant energy consumption. The final goal is to evenly distribute the airflow inside the vented box. Sensitivity analysis was performed for three structural parameters: the number of pipes, the number of holes in the middle pipe, and the number of each increment from the inside to the outside pipe. A total of 16 random array sets of three structural parameters with four levels were determined using the orthogonal experimental design. Commercial software was used for the construction of a 3D model for the selected experimental points, and this data was used to obtain the airflow velocities, which were then used to obtain the standard deviation of each experimental point. According to the range analysis, the combination of the three structural parameters was optimized. In other words, an efficient and economical optimization method considering the performance of the vented box was established, and it could be widely used to extend the storage time of fresh food.
Fresh vegetables and fruits occupy a high proportion of human food consumption, not only because they have good taste and an attractive form, but also because they are of great benefit for people to obtain nutrition and maintain health1. Many studies have shown that fresh fruits and vegetables play a unique role in preventing many diseases2,3. In the storage process of fresh fruits and vegetables, fungi, light, temperature, and relative humidity are the important reasons for their deterioration4,5,6,7,8. These external conditions affect the quality of stored fresh fruits and vegetables by affecting the internal metabolism or chemical reactions9.
Common treatment technologies for fruits and vegetables include nonthermal and thermal preservation. Among them, thermal pretreatment has a positive effect on the drying process, but it can also have adverse effects on product quality, such as loss of nutrients, change of flavor and odor, and change of color10,11. Therefore, in recent years, the nonthermal preservation of products has received attention from the research perspective to meet the demand of consumers for fresh products. At present, there are mainly radiation processing, pulsed electric field, ozone processing, edible coatings, dense phase carbon dioxide, and other nonthermal preservation technologies to store fruits and vegetables, but these technologies often have shortcomings, such as the requirement of large equipment, high price, and the cost of use12. Therefore, the design of a simple structure, low cost, and convenient control of the preservation equipment is very meaningful to the food industry.
In the storage environment for fruits and vegetables, a proper air circulation system helps to eliminate the heat generated by the product itself, reduce the temperature gradient, and maintain the temperature and humidity in the space where it is located. Proper air circulation also prevents weight loss due to respiration and fungal infections13,14,15. Numerous studies have been conducted on airflow within different structures. Praeger et al.16,17 measured the wind speed at different positions under different fan operating powers in a warehouse through sensors and found that there could be as big as a sevenfold difference in air velocity due to different vertical heights, and the air velocity at each position was positively correlated with the fan operating power. Moreover, a study examined the effect of cargo arrangement and the number of fans on airflow, and it was concluded that increasing the distance of some fan positions and rationally choosing the number of fans was helpful in improving the effect. Berry et al.18 studied the effect of airflow in different fruit storage environments on stomata distribution in packing boxes. Using simulation software, Dehghannya et al.19,20 studied the air flow state of forced pre-cold air in the package with different vent areas, quantities, and distribution positions on the packaging wall, and obtained the nonlinear influence of each parameter on the air flow state. Delele et al.21 applied a computational fluid dynamics model to study the influence of products randomly distributed in different forms of ventilation boxes on airflow. They found that the product size, porosity, and box hole ratio had a greater impact on airflow, whereas random filling had a smaller impact. Ilangovan et al.22 studied airflow patterns and thermal behavior between the three packaging structures and compared the results with reference structural models. The results showed that the heat distribution in the box was not uniform because of the different locations and designs of the vent. Gong et al.23 optimized the width of the gap between the edge of the tray and the wall of the container.
The techniques used in this paper include simulation and optimization methods. The principle of the former is that the governing equations were discretized and numerically solved using the finite volume method21. The optimization method used in this paper is referred to as orthogonal optimization24. The orthogonal test is a typical multifactor and multilevel analysis method. The orthogonal table built using this method contains representative points uniformly distributed in the design space, which can visually describe the entire design space and be examined. That is, fewer points represent the full factor test, greatly saving time, manpower, material, and financial resources. The orthogonal test has been widely used in the design of experiments in the fields of power systems, chemistry, civil engineering, etc25.
The objective of this study is to design and optimize a high-performance vented box. A vented box can be defined as an original box including a gas control device that disperses the gas uniformly in the box. Velocity uniformity refers to how evenly air flows through the vented box. Yun-De et al.26 have previously shown that the property of multiporous material has an important effect on the velocity uniformity of a fresh vegetable box. In some experiments, a plenum or modulated chamber was left at both the top and the bottom of the test chamber to guarantee a homogenous distribution of either forced or induced air27. The vented box designed in this paper contains arrays of pipes with zigzag holes. Controlling the airflow distribution in the vented box is the main preservation strategy. There are two air inlets of equal size set parallelly at the left and right sides of the vented box, and an outlet is set at the upper side of the box. Designing the internal structure of a vented box is the key to this study. In other words, the number of pipes and holes is an important parameter for changing the internal structure of the vented box. The reference model has 10 pipes. The two middle pipes have 10 holes each, which are staggered across the pipes. The number of holes from the middle to the outer pipe increase by two at a time.
In other words, when we keep fresh vegetables, fruits, and other products, continuous and stable airflow can reduce the respiration of products, reduce ethylene and other harmful substances for product preservation, and reduce the temperature produced by the products themselves. Due to the different parameters of the vented box, it is not easy to obtain the required airflow state, which will affect the preservation property of the vented box. Therefore, the project takes the internal airflow velocity uniformity of the vented box as the control objective. A sensitivity analysis was conducted for the structural parameters of the vented box. The samples were selected by orthogonal experimental design. We used range analysis to optimize the combination of the three structural parameters. Meanwhile, we verify the desirability of the optimization results.
1. Pre-simulation processing
NOTE: Considering the arrays of pipes, the three-dimensional bottom half and the top half of the vented box models are established by using three-dimensional software and saving them as X_T files, the overall dimensions are shown in Figure 1. Configurations are shown in the table of materials.
2. Simulation analysis
NOTE: The following operations are described based on the general sequence of simulation analysis from setup to solution to result.
3. Orthogonal experiment design and range analysis
Following the protocol, the first three parts were the most important, which include modeling, meshing, and simulation, all in order to obtain the standard deviation of the flow rate. Then, we completed the structure optimization of the vented box through orthogonal experiments and range analysis. The model used in the protocol is the reference-vented box model, which is the initial model obtained from the reference. Figure 4 shows the result of the streamlined flow of the reference vented b...
Due to its high performance and complex structure, in this study, we built a ventilated box based on modeling software. We analyzed the internal flow by simulation software. Simulation software is known for its advanced physics modeling capabilities, which include turbulence modeling, single- and multiphase flows, combustion, battery modeling, fluid-structure interaction, and much more. The sample selection method used in this paper is the orthogonal experimental design method, which is suitable for mechanical production...
The authors have nothing to disclose.
This research is supported by Wenzhou Science and Technology Bureau of China (Wenzhou major scientific and technological innovation project under Grant No. ZG2020029). The research is funded by the Wenzhou Association for Science and Technology with Grant No. KJFW09. This research was supported by the Wenzhou Municipal Key Science and Research Program (ZN2022001).
Name | Company | Catalog Number | Comments |
Hardware | |||
NVIDIA GPU | NVIDIA | N/A | An NVIDIA GPU is needed as some of the software frameworks below will not work otherwise. https://www.nvidia.com |
Software | |||
Ansys-Workbench | ANSYS | N/A | Multi-purpose finite element method computer design program software.https://www.ansys.com |
SOLIDWORKS | Dassault Systemes | N/A | SolidWorks provides different design solutions, reduces errors in the design process, and improves product quality www.solidworks.com |
SPSS | IBM | N/A | Software products for statistical analytical operations, data mining, predictive analysis, and decision support tasks software.https://www.ibm.com |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone