Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
To understand network dynamics of microcircuits in the neocortex, it is essential to simultaneously record the activity of a large number of neurons . In-vivo two-photon calcium imaging is the only method that allows one to record the activity of a dense neuronal population with single-cell resolution .
To understand network dynamics of microcircuits in the neocortex, it is essential to simultaneously record the activity of a large number of neurons . In-vivo two-photon calcium imaging is the only method that allows one to record the activity of a dense neuronal population with single-cell resolution . The method consists in implanting a cranial imaging window, injecting a fluorescent calcium indicator dye that can be taken up by large numbers of neurons and finally recording the activity of neurons with time lapse calcium imaging using an in-vivo two photon microscope. Co-injection of astrocyte-specific dyes allows one to differentiate neurons from astrocytes. The technique can be performed in mice expressing fluorescent molecules in specific subpopulations of neurons to better understand the network interactions of different groups of cells.
The advantage of this method over electrophysiological recordings is that it is less invasive and allows the recordings of activity in dense neuronal neuronal networks. When doing this procedure it s important to remember to take extreme care when performing the craniotomy not to damage the dura. Even a small amount of subdural bleeding with greatly obscure the imaging.
We would like to acknowledge Olga Garaschuk for helpful discussions on optimizing the bulk loading of calcium indicators.
Material Name | Type | Company | Catalogue Number | Comment |
---|---|---|---|---|
Name | Company | Catalog Number | Comments | |
Oregon Green BAPTA1-AM | Reagent | Invitrogen | O-6807 | |
Fluo 4- AM | Reagent | Invitrogen | F-14201 | |
Sulforhodamine 101 | Reagent | Invitrogen | S-359 | |
Pluronic F-127 in DMSO | Reagent | Invitrogen | P-3000MP | |
Centrifugal Filter (0.45 micron) | Reagent | Millipore | UFC3 0HV 0S |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone