É necessária uma assinatura da JoVE para visualizar este conteúdo. Faça login ou comece sua avaliação gratuita.
Method Article
A interferência de RNA fita dupla (dsRNAi) técnica é empregada para baixo-regular a coenzima A redutase cinamoil milho gene (ZmCCR1) para diminuir o teor de lignina da planta. A lignina sub-regulação da parede da célula é visualizada por meio de análises microscópicas e quantificada pelo método de Klason. São analisadas as mudanças de composição em hemicelulose e celulose cristalina.
Para facilitar a utilização de biomassa lignocelulósica como um recurso bioenergia alternativa, durante os processos de conversão biológica, um passo de pré-tratamento é necessário para abrir a estrutura da parede celular das plantas, o aumento da acessibilidade dos hidratos de carbono de parede celular. A lignina, um material de polifenóis presente em muitos tipos de parede celular, é conhecida por ser um obstáculo significativo para a enzima de acesso. Redução no teor de lignina para um nível que não interfira com a integridade estrutural e a defesa do sistema da planta pode ser um passo importante para reduzir os custos de produção de bioetanol. Neste estudo, foram geneticamente regulada para baixo um dos genes relacionados com a biossíntese da lenhina, cinamoil-CoA redutase (ZmCCR1) por meio de uma técnica de cadeia dupla de RNA de interferência. O constructo ZmCCR1_RNAi foi integrado no genoma do milho utilizando o método de bombardeamento de partículas. As plantas de milho transgénicas cresceram normalmente, em comparação com as plantas de controlo do tipo selvagem, sem noterfering com o crescimento da biomassa ou de mecanismos de defesa, com exceção da exibição de marrom-coloração em transgênicos plantas de folhas meados de costelas, cascas e caules. As análises microscópicas, em conjugação com o ensaio de histológica, revelou que as fibras esclerenquimáticas foliares foram desbastadas, mas a estrutura e tamanho de outros componentes principais do sistema vascular não foi alterada. O teor de lignina no milho transgénico foi reduzida em 7-8,7%, o teor de celulose cristalina foi aumentada em resposta a uma redução da lignina, hemicelulose e manteve-se inalterada. As análises podem indicar que o fluxo de carbono podem ter sido desviadas da biossíntese de lignina para a biossíntese de celulose. Este artigo traça os procedimentos utilizados para regular o teor de lignina em milho através de tecnologia RNAi, e as análises de composição da parede celular utilizada para verificar o efeito das modificações sobre a estrutura da parede celular.
A produção de biocombustíveis a partir da biomassa lignocelulósica é altamente desejável, devido à sua abundância presente em os EUA 1, e, no caso de a colheita sustentável de resíduos agrícolas e florestais, a capacidade de não competir diretamente para terras agrícolas utilizadas para a produção de alimentos e rações animais. No entanto, ao contrário dos grãos de milho, que é a principal fonte de biocombustível momento gerado em os EUA, materiais lignocelulósicos são significativamente mais complexo e difícil de quebrar. Além do hidratos de carbono de cadeia longa, a celulose e hemicelulose, que são as principais fontes de açúcares durante a fermentação de materiais lignocelulósicos, muitos tipos de paredes de células de planta também contêm lenhina, um polímero que proporciona a força de fenilpropanóide, a defesa contra o ataque patogénico, e hidrofobicidade as paredes celulares. Embora necessários para o crescimento e sobrevivência da planta, lignina também apresenta uma barreira significativa para a conversão enzimática de sucesso da celulose e hemicelluperder para açúcares solúveis. Materiais com alto teor de lignina são geralmente materiais menos desejáveis, tanto para o biocombustível (através de vias de conversão biológica) e as indústrias de papel e celulose, devido aos impactos negativos sobre as características de processamento e qualidade do produto. Assim, a manipulação genética dos materiais vegetais para a redução de lignina a um nível que não interfira com a resistência estrutural das culturas e sistemas de defesa poderia ser importante para a redução de custos de produção, tanto para o biocombustível lignocelulósico e as indústrias de papel e celulose.
No milho (Zea mays), a lenhina é covalentemente reticulada a hemicelulose na parede celular primária através de ácido ferúlico e pontes diferulate 2. O complexo de lignina-hemicelulose se liga a microfibrilas de celulose por meio de ligações de hidrogénio, formando uma matriz complexa que confere integridade e resistência da parede celular secundária. A resistência mecânica das paredes das células de planta é fortemente determinada pelo tipo de lignin subunidades 3-5. Em estudos anteriores, alterando as proporções de subunidades lignina mostrou nenhuma tendência clara sobre a digestibilidade enzimática 6-11. No entanto, reduzir o teor de lignina apresentam geralmente uma melhoria em conversões 12,13 e pode ser a chave para o aumento da digestibilidade do material vegetal por enzimas hidrolíticas incluindo endocellulases, celobiohidrolases, e β-glucosidases 14.
A engenharia genética para regular o nível de transcritos de expressão tem sido amplamente praticado para melhorar as características de cultura. Técnicas avançadas, incluindo anti-sense 15 e co-supressão de 16 tecnologias, permitir eficaz infra-regulação de genes alvo. Completa gene knock-out também foi alcançado usando construções de genes que codificam RNA emendados-intron com uma estrutura hairpin 17. Além disso, uma dupla interferência de RNA encalhado (dsRNAi) técnica, ou seja, um poderoso e eficaz mídia expressão gênicator que funciona por um ou outro visando a degradação transcrição ou tradução repressão, fornece um meio potente para induzir uma ampla gama de efeitos de supressão do mRNA alvo 18. Técnicas de silenciamento de genes mostram várias limitações. Estas técnicas não são reguladas com precisão o nível de transcrição e pode causar efeitos de silenciamento inesperadas em outros genes homólogos.
Neste método, utilizou-se o bombardeamento de partículas para realizar a dsRNAi construções no genoma de milho. Até à data, uma vasta gama de espécies de plantas têm sido transformadas com sucesso usando bombardeamento de partículas, transformação mediada por Agrobacterium, electroporação, microinjecção e métodos. Na transformação genética de milho, o método de bombardeamento de partículas é vantajoso sobre todos os outros métodos, pois é o mais eficiente. O bombardeamento com partículas não é dependente de bactérias, de modo que o método é livre de restrições biológicas, tais como o tamanho dos genes, espécies de gene ouigin, ou o genótipo da planta. O sistema de entrega de transgene física permite alta de DNA de peso molecular e de múltiplos genes a ser introduzido no genoma da planta e, em certos casos em cloroplastos de alta eficiência de transformação 19. A redução de lignina no sistema vascular da folha no meio da nervura podem ser visualizados por microscopia electrónica de varrimento (SEM), o que é benéfico para a análise da topografia e composição das amostras.
Em plantas de milho, dois dos cinamoil-CoA redutase (ZmCCR1: X98083 e ZmCCR2: Y15069) os genes foram encontradas no genoma de milho 20. Cinamoil-CoA redutase catalisa a conversão dos ésteres hidroxicinamoil-CoA em aldeídos cinamilo. Escolhemos o gene ZmCCR1 para regular esta enzima, porque o gene é expresso em todos os tecidos lignifying. Os 523 nucleótidos no terminal 3 'do gene ZmCCR1 foram escolhidos para um dsRNAi construir porque as sequências parecia sermais diversificada em comparação com aqueles da ZmCCR2. Assim, a construção dsRNAi seria precisamente ligar apenas para ZmCCR1, evitando off-alvo silenciando 21. Um construto ZmCCR1_RNAi foi manipulada no ImpactVector1.1-tag sistema de expressão citoplasmática (IV 1,1) contendo o promotor específico de tecido verde, a ribulose-1, 5-carboxilase oxigenase-bisfosfato (RuBisCO).
Para estudar os efeitos da dsRNAi construção de plantas transgénicas, o teor de lenhina foram quantificadas. A medição de lenhina de Klason (ácido insolúvel) é conhecido por ser mais preciso em comparação com os métodos de quantificação de ácidos detergente lignina que solubilizam alguma da lenhina 22. Portanto, a lenhina de Klason foi medido em caules de milho transgénicas. Este procedimento consiste de uma hidrólise ácida de dois passos que converte os hidratos de carbono poliméricos solúveis em monossacarídeos 23. A biomassa hidrolisada foi então fracionado em materi solúveis e insolúveis ácidoals e da lignina insolúvel em ácido foi medida de acordo com estudos anteriores 23,24. Idealmente, a análise de lenhina deve incluir extracções com água e etanol antes do passo de hidrólise, a fim de remover materiais solúveis que podem interferir com os resultados, e uma combustão pós-hidrólise do resíduo de lenhina para contabilizar quaisquer cinzas presentes no resíduo. Sem estes passos, o teor de lenhina da amostra pode ser artificialmente. O método integral é aqui apresentado, no entanto, para as nossas experiências fomos capazes de realizar ambos os passos devido à pequena quantidade de material disponível para testes
Dois outros componentes da parede celular, celulose e hemicelulose foram também analisadas na lignina regulada linhagens de milho transgénico. Tem sido relatado que as plantas transgénicas que foram regulados negativamente em ambos os seus fenilalanina amónia-liase (PAL) 25, 4-cumarato: CoA ligase (4CL) 26, ou um cinamilolcohol desidrogenase (CAD) 27 mostram um aumento em outros componentes estruturais da parede celular. Como um primeiro passo para os nossos estudos, celulose cristalina foi medida usando o método Updegraff 28. Este método foi originalmente concebido para a determinação de celulose em um grande número de bactérias celulolíticas e fungos. Resumidamente, os estoques de milho moídos foram tratados com Updegraff reagente (ácido acético: ácido nítrico: água) para remover a hemicelulose, lignina, e xylosans. A celulose cristalina foi completamente hidrolisada em glicose através Saeman hidrólise por adição de H 2 SO 4. A celulose cristalina foi então analisado utilizando o método colorimétrico de antrona 29. Para verificar se o conteúdo de hemicelulose foram alterados, os extractos de monossacárido de talos moídos foram hidrolisadas utilizando ácido trifluoroacético, derivatizados utilizando o método de acetato de alditol e, em seguida, analisado por cromatografia gasosa (GC) de 30. Os procedimentos detalhados para cel cristalinaanálises de composição de conteúdo lose e polissacáridos de matriz são descritos em Foster et al. (2010) 31.
Aqui, descrevemos os procedimentos utilizados para a lignina baixa regulação no milho por meio de uma tecnologia de RNAi, transformação bombardeamento de partículas e análise de lignina para a desconstrução acelerada de milho biomassa lignocelulósica em açúcares fermentáveis para biocombustíveis.
1. Preparação de dsRNAi construções usadas para o Down-regulação da ZmCCR1
2. Milho Transformação Genética
3. Ensaio histológica
4. Klason lignina Medição
M PRE = Massa da biomassa pré-extraído
M POST = Massa da biomassa pós-extraído
M VIAL = Massa de biomassa extraída adicionada ao frasco
M = Massa RESÍDUO de resid cadinho e ligninaue
M = Massa ASH de cadinho e cinzas
MC = teor de umidade da biomassa pré-extraído, base de peso total
5. Análise Carboidratos
Nós demonstramos uma redução do teor de lignina em plantas de milho via RNAi. O método de transformação de bombardeamento de partículas produziram cerca de 30% de eficiência trnasformation. O silenciamento de genes de ZmCCR1 foi observado de forma consistente em gerações T0-T2. A lignina reduzida transgênicos cresceu de forma semelhante a plantas de milho de tipo selvagem, exceto para a exibição de coloração marrom na folha mid-rib, casca e tronco. O ensaio histológico mostrou que as linhas muta...
A acessibilidade de celulases microbianas para plantar polissacáridos da parede celular está em grande parte dependente do grau ao qual estão associados com polímeros fenólicos 23. A taxa de conversão de biomassa lignocelulósica para fermentáveis açúcar está negativamente correlacionada com o teor de lignina depositado na parede celular secondadry plantas. Esta correlação é atribuída às propriedades físicas da lignina tais como hidrofobicidade 24, heterogeneidade química, e ...
Não há conflitos de interesse declarados.
A imagem microscópica foi realizada através dos serviços do Estado Centro Universitário Michigan for Advanced Microscopia. Milho calo foi comprado a partir do Centro de Transformação de milho de Iowa State University. Os autores gostariam de agradecer Jeffrey R. Weatherhead do Laboratório de Pesquisa de Plantas MSU para a sua assistência técnica na análise de carboidratos. Esta pesquisa foi generosamente financiada pelo Programa Milho de Marketing de Michigan (CMPM) eo Consórcio para Plant Biotechnology Research (CPBR).
Name | Company | Catalog Number | Comments |
N6OSM (Osmotic medium) | Made in-house | ||
N6E (Callus induction) | Made in-house | ||
N6S media (Selection media) | Made in-house | ||
Regeneration medium | Made in-house | ||
Rooting medium | Made in-house | ||
10% Neutral buffered formalin (1 L) | Made in-house | ||
Bio-Rad PSD-1000/He Particle Delivery device | Hercules, CA, United States | ||
Zeiss PASCAL confocal laser scanning microscope | Carl Zeiss, Jena, Germany | For brightfield microscopy, the images were recorded using a Zeiss (Jena, Germany) PASCAL confocal laser scanning microscope with a 488 nm excitation mirror, a 560 nm emission filter, and a 505-530 nm emission filter. Image analysis was performed using Laser scanning microscope PASCAL LSM version 3.0 SP3 software. | |
Excelsior ES Tissue Processor | Thermo Scientific, Pittsburgh, PA, United States | ||
HistoCentre III Embedding Station | Thermo Scientific, Pittsburgh, PA, United States | ||
Microtome Model Reichert 2030 | Reichert, Depew, NY, United States | ||
Emscope Sputter Coater model SC 500 | Ashford, Kent, England | ||
JEOL JSM-6400V Scanning Electron Microscope | JEOL Ltd., Tokyo, Japan | ||
Fitzpatrick JT-6 Homoloid mill | Continental Process Systems, Inc., Westmont, IL | ||
MA35 Moisture Analyzer | Sartorius | ||
Critical point dryer, Balzers CPD | Leica Microsysstems Inc, Buffalo Grove, IL, United States | ||
Screw-top high pressure tubes | Ace Glass, Vineland, NJ | #8648-27 | |
Screw-top high pressure tube plugs | Ace Glass, Vineland, NJ | #5845-47 |
Solicitar permissão para reutilizar o texto ou figuras deste artigo JoVE
Solicitar PermissãoThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados