É necessária uma assinatura da JoVE para visualizar este conteúdo. Faça login ou comece sua avaliação gratuita.
Method Article
Protocols to investigate the dynamics of chloroplast stromules, the stroma-filled tubules that extend from the surface of chloroplasts, are described.
Stromules, or "stroma-filled tubules", are narrow, tubular extensions from the surface of the chloroplast that are universally observed in plant cells but whose functions remain mysterious. Alongside growing attention on the role of chloroplasts in coordinating plant responses to stress, interest in stromules and their relationship to chloroplast signaling dynamics has increased in recent years, aided by advances in fluorescence microscopy and protein fluorophores that allow for rapid, accurate visualization of stromule dynamics. Here, we provide detailed protocols to assay stromule frequency in the epidermal chloroplasts of Nicotiana benthamiana, an excellent model system for investigating chloroplast stromule biology. We also provide methods for visualizing chloroplast stromules in vitro by extracting chloroplasts from leaves. Finally, we outline sampling strategies and statistical approaches to analyze differences in stromule frequencies in response to stimuli, such as environmental stress, chemical treatments, or gene silencing. Researchers can use these protocols as a starting point to develop new methods for innovative experiments to explore how and why chloroplasts make stromules.
Chloroplasts are dynamic organelles in plant cells responsible for photosynthesis and a host of other metabolic processes. Signaling pathways from the chloroplast also exert significant influence on plant physiology and development, coordinating plant responses to environmental stress, pathogens, and even leaf shape1-6. Recently, biologists have gained interest in a poorly understood aspect of chloroplast structure: stromules, very thin stroma-filled tubules that extend from the surface of the chloroplast7.
The biological functions of stromules remain unknown, although stromule frequency is known to vary in response to environmental stimuli7-9, and stromules may be capable of transmitting signaling molecules between organelles6. All types of plastids (not only the green, photosynthetic chloroplasts, but also clear leucoplasts, starch-filled amyloplasts, and pigmented chromoplasts, to name a few types of plastids) make stromules, and stromules are found in all land plant species that have been examined to date. Stromules can extend and retract dynamically, appearing or disappearing within seconds, or they can remain relatively stationary for long times. One of the major hurdles facing stromule biologists is that stromules are often studied using dramatically different methods, tissues, and species, making comparisons across the stromule biology literature difficult. Going forward, standard practices and thorough descriptions of the experimental systems used to study stromules will be critical to discovering the function of these ubiquitous features of chloroplast morphology.
Here we describe methods for visualizing stromule formation in the epidermal chloroplasts of Nicotiana benthamiana leaves. In the mesophyll, chloroplasts are densely packed into large, three-dimensional cells, which makes it difficult to accurately and rapidly visualize stromules by confocal microscopy. By contrast, epidermal cells are relatively flat, contain fewer chloroplasts, and are at the surface of the leaf, allowing for easy and rapid visualization of stromules. N. benthamiana is an ideal model system for these experiments because, unlike many plant species, all cells in the epidermis of N. benthamiana make chloroplasts10. In the epidermis of most plants, including Arabidopsis thaliana, only the stomatal guard cells have chloroplasts, while other epidermal cells have "leucoplasts", plastids that are clear, relatively amorphous, and nonphotosynthetic9,11,12. Thus, whereas a single field of view of an A. thaliana epidermis might show only a handful of chloroplasts in a pair of guard cells, a field of view of an N. benthamiana epidermis will include dozens or even hundreds of chloroplasts. All of the methods described here, however, can be modified to investigate other questions in stromule biology; for example, we have used the same approach to study leucoplast stromules of A. thaliana9.
Access restricted. Please log in or start a trial to view this content.
NOTA: Para este protocolo, temos nos concentrado em ensaio frequência stromule na epiderme de N. deixa benthamiana. Várias linhas transgénicas estáveis foram gerados que pode ser utilizado para este fim, incluindo a 35S PRO: FNRtp: EGFP 13 e NRIP1 Cerulean: 6. Ambas estas linhas mostram a expressão robusta de fluoróforos no estroma do cloroplasto de folhas cultivadas sob uma ampla gama de condições. Alternativamente, fluoróforos segmentados por cloroplastos pode ser transitoriamente expresso em N. benthamiana usando Agrobacterium Transformações 13. Isto é menos do que ideal as linhas transgénicas, dado que as infiltrações de Agrobacterium induzem algumas respostas de defesa basais em N. benthamiana e interacções com Agrobacterium pode alterar a frequência stromule na folha 14, potencialmente complicar a interpretação dos resultados. Finalmente, para visualizar a formação stromule in vitro,cloroplastos pode ser extraído a partir de qualquer espécie de planta, utilizando fluoróforos geneticamente codificados ou um corante fluorescente, tal como descrito na secção 5 abaixo. 9,15
NOTA:. Métodos pormenorizados de cultivo de plantas foram previamente descritos 16 Resumidamente, crescer N. plantas benthamiana em 4 potes "preenchidos com qualquer mistura de solo profissional que fornece uma boa drenagem. Cubra mudas com uma cúpula de plástico transparente para os primeiros 10-14 dias para fornecer um ambiente úmido para a germinação. adicionar qualquer combinação de fertilizantes padrão seguindo as instruções do fabricante para 14- plantas dias de idade. Cultive plantas sob luz branca, usando ~ 100 mol fótons m -2 seg -1 intensidade de luz. As plantas aquáticas regularmente.
1. Preparar as amostras de folhas para visualização
NOTA: dinâmica Stromule são afetados por ferindo 8, então a preparação do tecido deve ser realizada imediatamente antes visualizando stromules por microscopia de fluorescência confocal. Idealmente, uma amostra deve ser visualizado com 15 min após remoção a partir da planta.
2. A visualização Stromules com microscopia de fluorescência confocal
Processamento 3. Imagem
4. Desenho Experimental e Amostragem
NOTA: Stromule frequência é altamente variável entre as folhas, mas vários relatos sugerem que há pouca variação na frequência stromule dentro de uma indivi9,17 dupla folha.
5. Extrair cloroplastos intactos para Visualize Stromule Dynamics
NOTA: Vários métodostêm sido utilizados para isolar os cloroplastos de folhas, incluindo um protocolo ligeiramente diferente num estudo recente sobre a formação in vitro stromule 15. O protocolo detalhado abaixo utiliza um método relativamente simples que não se obter amostras de cloroplastos bioquimicamente puros, mas que em vez disso isolar uma quantidade grande de cloroplastos intactos, 9,18 saudáveis.
Access restricted. Please log in or start a trial to view this content.
Este protocolo foi usado para visualizar a frequência stromule de dia e à noite nos cotilédones de jovens N. mudas benthamiana. Fatias de uma pilha z foram fundidas em uma única imagem (Figura 1A). Para efeitos visuais, que a imagem foi então Saturado e invertido de modo que o estroma aparece negro (Figura 1B). Os cloroplastos foram marcados quer como não tendo stromules asterisco (verde) ou com pelo menos um stromule (as...
Access restricted. Please log in or start a trial to view this content.
Ao investigar stromules, três fatores importantes devem ser considerados ao longo de: (i) a manipulação do tecido da planta devem ser mantidos a um mínimo absoluto, (ii) o sistema experimental deve ser mantido consistente, e (iii) estratégias de amostragem devem ser cuidadosamente planejado para assegurar robusto, os dados podem ser reproduzidos são analisados.
Stromules são notavelmente dinâmica: eles podem se estender e retrair rapidamente diante dos olhos de um observador sob o mi...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
J.O.B. and A.M.R. were supported by predoctoral fellowships from the National Science Foundation.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Hepes | Sigma-Aldrich | H3375 | |
NaOH | Fischer-Scientific | S320-1 | |
Sorbitol | Sigma-Aldrich | S1876 | |
EDTA | Fischer-Biotech | BP121 | |
MnCl2 | Sigma-Aldrich | 221279 | |
MgCl2 | Sigma-Aldrich | M0250 | |
KCl | Sigma-Aldrich | P3911 | |
NaCl | Sigma-Aldrich | S9625 | |
Laser Scanning Confocal Microscope | Carl Zeiss Inc | Model: LSM710 | |
Carboxyfluorescein diacetate (CFDA) | Sigma-Aldrich | 21879 | |
Dimethyl sulfoxide (DMSO) | EMD | MX1458-6 | |
Waring blender | Waring | Model: 31BL92 | |
Fiji | fiji.sc | Open-source software for analyzing biological images |
Access restricted. Please log in or start a trial to view this content.
Solicitar permissão para reutilizar o texto ou figuras deste artigo JoVE
Solicitar PermissãoThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados