É necessária uma assinatura da JoVE para visualizar este conteúdo. Faça login ou comece sua avaliação gratuita.
Method Article
Descrito é uma metodologia para quantificar a expressão dos 96 genes e 18 proteínas de superfície por células únicas ex vivo, permitindo a identificação de diferencialmente expressaram genes e proteínas em células infectadas por vírus em relação as células não infectadas. Aplicamos a abordagem de estudo CD4 infectadas SIV+ T células isoladas de macacos rhesus.
Análise de célula única é uma ferramenta importante para dissecar heterogêneas populações de células. A identificação e isolamento de células raras podem ser difícil. Para superar este desafio, combinando uma metodologia indexados citometria de fluxo e elevado-throughput multiplexado quantitativa cadeia da polimerase (qPCR) foi desenvolvido. O objetivo foi identificar e caracterizar o vírus da imunodeficiência símia (SIV)-infectados células presentes dentro macaques do rhesus. Através da quantificação da proteína classificando fluorescência-ativado da pilha (FACS) e mRNA por qPCR, células infectadas por vírus são identificadas pela expressão do gene viral, que é combinada com medidas de gene e proteína de anfitrião para criar um perfil multidimensional . Chamamos a abordagem, avaliação de célula única Proteo-transcriptional alvo ou tSCEPTRE. Para executar o método, células viáveis estão manchadas com anticorpos fluorescentes específicas para marcadores de superfície utilizados para isolamento de FACS de um subconjunto de células e/ou análise fenotípica a jusante. Células individuais são classificadas seguido de Lise imediata, multiplex transcrição reversa (RT), pré-amplificação por PCR e qPCR alto throughput de até 96 transcrições. Medições de FACS são registradas no momento da triagem e posteriormente relacionadas com os dados de expressão do gene por posição bem para criar uma proteína combinada e perfil transcricional. Para estudar infectados com SIV diretamente células ex vivo, as células foram identificadas por qPCR detecção de múltiplas espécies de RNA virais. A combinação de transcrição viral e a quantidade de cada fornecem uma estrutura para classificar as células em estágios diferentes do ciclo de vida viral (por exemplo, produtivo versus não-produtivos). Além disso, tSCEPTRE de células SIV+ foram em relação ao não infectados células isoladas do mesmo espécime para avaliar genes diferencialmente expressos anfitrião e proteínas. A análise revelou anteriormente apreciada heterogeneidade de expressão do RNA viral entre células infectadas, assim como na vivo mediada por SIV pós-transcricional gene regulamento com resolução de célula única. O método tSCEPTRE é relevante para a análise de qualquer população de célula passível de identificação pela expressão da proteína de superfície marker(s), host ou patógeno genes ou suas combinações.
Muitos patógenos intracelulares contam com máquinas de célula de acolhimento para replicar, muitas vezes alterando a biologia de pilha de anfitrião ou direcionamento especifico subpopulações de células hospedeiras para maximizar suas chances de propagação. Como resultado, processos biológicos células comumente são rompidos, com consequências deletérias para a saúde geral do hospedeiro. Compreender as interações entre os vírus e as células hospedeiras, na qual eles replicar irá elucidar mecanismos de doença que podem auxiliar no desenvolvimento de terapias melhoradas e estratégias para prevenir a infecção. Diretas ferramentas analíticas que permitem o estudo das interações patógeno-hospedeiro são essenciais para este fim. Análise de célula única fornece os meios apenas atribuem inequivocamente um fenótipo celular a um determinado genótipo ou infecção status1. Por exemplo, infecções patogênicas frequentemente induzem alterações directas e indirectas em células hospedeiras. Por conseguinte, distinguir células infectadas de seus homólogos não infectados é necessário atributo anfitrião célula alterações ou infecção direta ou efeitos secundários, tais como generalizada inflamação. Além disso, para muitos patógenos, como SIV e vírus de imunodeficiência humana (HIV), infecção de célula de acolhimento prossegue através de múltiplos estágios, tais como cedo, tarde, ou latente, cada uma delas pode ser caracterizada por gene distinto e de perfis de expressão da proteína2 , 3 , 4 , 5. as análises em massa das misturas de célula irão falhar capturar esta heterogeneidade6. Por outro lado, altamente multiplexado análises de célula única capazes de quantificar a expressão dos dois viral e genes de host oferecem um meio para resolver perturbações celulares específicos de infecção, incluindo variações em fases de infecção. Além disso, analisando interações patógeno-hospedeiro em fisiologicamente configurações relevantes é fundamental para a identificação dos eventos que ocorrem em organismos infectados. Assim, processos de métodos que podem ser aplicados diretamente ex vivo são susceptíveis de melhor captura na vivo .
SIV e HIV CD4-alvo+ T células, no qual eles neutralizar fatores do hospedeiro antiviral "restrição" e downregulate apresentadoras de moléculas para estabelecer infecção produtiva e evitar a vigilância imune7,8, 9,10,11. Sem tratamento, a infecção resulta em enormes perdas de CD4+ T células, em última análise, culminando na adquirida da imunodeficiência síndrome (AIDS)12. No cenário da terapia anti-retroviral, reservatórios de células Latentemente infectadas persistirem por décadas, colocando uma barreira formidável para estratégias curativas. Compreender as propriedades na vivo de células infectadas pelo VIH/SIV tem potencial para revelar características de célula de acolhimento fundamental na patogênese e persistência. No entanto, isto tem sido altamente desafiador, principalmente devido a low frequency de células infectadas e falta de reagentes prontamente reconhecê-los. Células que transcrevem RNA viral, estima-se que para estar presente no 1 – 0,01% de CD4+ T células no sangue e tecido linfoide13,14,15. Sob terapia supressiva, células Latentemente infectadas são ainda menos frequentes em 10-3– 10-7 16,17,18. Coloração da proteína viral ensaios que funcionam bem para estudar em vitro infecções, tais como para Gag intracelular, são suboptimal devido a coloração de fundo de 0.01-0.1%, similar ou maior do que a frequência de células infectadas13, 14. Coloração da superfície para proteína Env usando bem caracterizadas SIV/HIV Env específicas os anticorpos monoclonais também provou ser difícil, provavelmente por razões semelhantes. Recentemente, novas ferramentas que visam melhorar a detecção de células expressando mordaça por qualquer incorporando os ensaios específicos para mordaça RNA ou usando tecnologias alternativas de imagem14,15,19. No entanto, essas abordagens permanecem limitadas no número de medições quantitativas executadas em cada célula.
Aqui, descrevemos a metodologia que (1) identifica células infectadas por vírus única diretamente ex vivo por qPCR quantitativo sensível e específica do gene viral e (2) quantifica a expressão de proteínas de superfície até 18 e 96 genes para cada infectado (e célula não infectada). Esta metodologia combina a medição da proteína de superfície de célula única por FACS seguido de lise celular imediata e expressão de gene análise usando multiplexado qPCR alvo no sistema Biomark. A tecnologia de circuito integrado de fluídico (IFC) permite a quantificação multiplexada de 96 genes de 96 amostras simultaneamente, realizado por uma matriz de 9.216 câmaras em que são realizadas as reações individuais qPCR. A classificação de células vivas FACS registra medições de abundância de alto teor de proteína, enquanto preservar a transcriptoma inteira para análise realizada imediatamente a jusante. Para identificar as células infectadas por vírus, ensaios específicos para RNAs virais alternativamente emendados e unspliced (vRNA) estão incluídos na análise qPCR, juntamente com um painel de ensaios definidos pelo usuário, totalizando até 96 genes, o número máximo de ensaios atualmente acomodadas em a IFC. A expressão de gene e proteína informações coletadas para cada célula são ligados por posição bem. Anteriormente, informou20resultados desta análise em outro lugar. Aqui, nós fornecemos mais detalhadas orientações metodológicas, bem como mais descritiva fenotipagem de CD4 infectadas SIV+ T células.
Esta abordagem, que nós chamamos de tSCEPTRE, pode ser aplicada para as suspensões de qualquer população de célula viável reativa para anticorpos fluorescente etiquetados e expressando um transcriptome compatível com ensaios de qPCR disponível. Por exemplo, ele pode ser usado para caracterizar gene diferencial e expressão de proteínas em raras células ou células não facilmente distinguidas por marcadores de proteína. A preparação da amostra se baseia em um padrão que mancha o protocolo usando anticorpos comercialmente disponíveis. Cytometers com capacidade de classificação de célula única também estão disponíveis comercialmente, mas precauções de biossegurança adicionais são necessárias para o processamento de células vivas infecciosas. Gravar o perfil de expressão de proteínas de célula única – para cada célula pela posição bem, referida aqui como indexados a classificação, é uma característica comum de FACS comercialmente disponível software de classificação. Análise computacional de genes diferencialmente expressos anfitrião entre populações de células de interesse não é descrito aqui, mas as referências são fornecidas métodos publicados anteriormente.
Nota: Um esquema de fluxo de trabalho do protocolo é mostrado na Figura 1. Consiste em três etapas principais: FACS, RT e pré-amplificação do cDNA e qPCR para até 96 genes simultaneamente. Duas versões do protocolo, classificação de células em limitar as diluições e classificação células únicas, são descritas mais detalhadamente nas etapas 5 e 6, respectivamente. Estas estratégias abordar questões de investigação diferentes, mas seguem procedimentos semelhantes.
1. pré-requisito ou prévia análise
2. Gene Expression ensaio preparação
3. superfície mancha de células viáveis
Nota: Coloracao intracelular, permeabilização e fixação não são compatíveis com este método como elas comprometer o RNA.
4. preparar pratos de coleção de célula, executar FACS classificar e gerar cDNA
5. variação r: FACS classificar as células em uma série de diluição limitar para determinar a frequência de vRNA+ células ou realizar o controle de qualidade Experimental
Nota: Antes de executar um tipo de célula única, pode ser útil para determinar a frequência de células de interesse, classificando-se as células em diluições em série em replicar. Esta etapa também fornece controle de qualidade valiosa para classificar eficiência, lise celular, recuperação de RNA e síntese de cDNA, conforme descrito na etapa 5.3. Determinação prévia de vRNA+ frequência de celulares permite uma estimativa mais precisa do número de células únicas que devem ser classificados para atingir o tamanho de amostra suficiente para análise de expressão de gene de células de vRNA adequadamente alimentado+ .
6. variação b: tipo de FACS células para análise de célula única
7. multiplex qPCR na plataforma Biomark
Nota: Esta seção pode seguir ou a versão A ou a B descrito acima. No estudo aqui descrito, aplicou-se exclusivamente à análise de célula única.
O fluxo de trabalho para o protocolo inteiro é representado na Figura 1. Consiste em duas variações definidas pelo número de células ordenadas: qualquer diluição limitante ou como único células, conforme descrito no texto. Exemplos de análises de qualificação da primeira demão-sonda em 2 vezes diluições em série do RNA são mostrados na Figura 2. A estratégia associada para identificar potenciais células SIV
O protocolo descrito aqui, denominado tSCEPTRE, integra a quantificação da proteína de superfície de célula única por citometria de fluxo multiparâmetros com expressão de RNAm de célula única quantitativa por RT-qPCR altamente multiplexado. A União dessas duas tecnologias permite snapshots de alto teor do combinado transcriptional e perfil de proteína de células individuais em um formato de alta produtividade. Usamos o método para identificar células até então indescritíveis infectadas com SIV na vi...
Este trabalho foi apoiado por um acordo de cooperação (W81XWH-07-2-0067) entre M. Henry Jackson Foundation para o avanço dos militares medicina, Inc. e o departamento E.U. de defesa (DOD). As opiniões expressadas são as dos autores e não devem ser interpretadas para representar as posições do exército dos EUA ou o departamento de defesa. Pesquisa foi conduzida sob um protocolo aprovado uso de animais em uma instalação de AAALACi credenciado em conformidade com o Animal Welfare Act e outros estatutos federais e regulamentos relativos a animais e experimentos envolvendo animais e adere aos princípios indicado no guia para o cuidado e uso de animais de laboratório, publicação do NRC, edição 2011.
Os autores gostaria de agradecer o NIAID VRC Flow Cytometry núcleo e as instalações do núcleo de citometria de fluxo MHRP para manutenção e operação de instrumentos de FACS e classificação de equipamentos; Maria Montero, Vishakha Sharma, Kaimei Song para assistência técnica especializada; Michael Piatak, Jr. (falecido) para obter assistência com projeto de ensaio qPCR SIV; e Brandon Keele e Matthew Scarlotta para SIV isolar sequências. As opiniões expressadas são as dos autores e não devem ser interpretadas para representar as posições do exército dos EUA ou o departamento de defesa. Pesquisa foi conduzida sob um protocolo aprovado uso de animais em uma facilidade AAALAC credenciado em conformidade com o Animal Welfare Act e outros estatutos federais e regulamentos relativos a animais e experimentos envolvendo animais e adere aos princípios indicado no guia para o cuidado e uso de animais de laboratório, publicação do NRC, edição 2011.
Name | Company | Catalog Number | Comments |
RNA extraction and PCR reagents and consumables | |||
Genemate 96-Well Semi-Skirted PCR Plate | BioExpress/VWR | T-3060-1 | |
Adhesive PCR Plate Seals | ThermoFisher | AB0558 | |
Armadillo 384-well PCR Plate | ThermoFisher | AB2384 | |
MicroAmp Optical Adhesive Film | Applied Biosystems/ThermoFisher | 4311971 | |
DEPC Water | Quality Biological | 351-068-101 | |
Glass Distilled Water | Teknova | W3345 | |
Superscript III Platinum One-Step qRT-PCR Kit | Invitrogen/ThermoFisher | 11732088 | |
SUPERase-In Rnase Inhibitor | Invitrogen/ThermoFisher | AM2696 | |
Platinum Taq | Invitrogen/ThermoFisher | 10966034 | |
dNTP Mix | Invitrogen/ThermoFisher | 18427088 | |
ROX Reference Dye (if separate from kit) | Invitrogen/ThermoFisher | 12223012 | |
DNA Suspension Buffer | Teknova | T0223 | |
RNAqueous kit | Invitrogen/ThermoFisher | AM1931 | |
TaqMan gene expression assays not listed in Table 2 | |||
CD6 | Applied Biosystems/ThermoFisher | Hs00198752_m1 | |
TLR3 | Applied Biosystems/ThermoFisher | Hs1551078_m1 | |
Biomark reagents | |||
Control Line Fluid Kit | Fluidigm | 89000021 | |
TaqMan Universal PCR Mix | Applied Biosystems/ThermoFisher | 4304437 | |
Assay Loading Reagent | Fluidigm | 85000736 | |
Sample Loading Reagent | Fluidigm | 85000735 | |
Dynamic Array 96.96 (chip) | Fluidigm | BMK-M-96.96 | |
FACS reagents | |||
SPHERO COMPtrol Goat anti-mouse (lambda) | Spherotech Inc. | CMIgP-30-5H | |
CompBeads Anti-Mouse Ig,k | BD Biosciences | 51-90-9001229 | |
5 ml Polystyrene tube with strainer cap | FALCON | 352235 | |
Aqua Live/Dead stain | Invitrogen/ThermoFisher | L34976 | dilute 1:800 |
Mouse Anti-Human CD3 BV650 clone SP34-2 | BD Biosciences | 563916 | dilute 1:40 |
Mouse Anti-Human CD4 BV786 clone L200 | BD Biosciences | 563914 | dilute 1:20 |
Mouse Anti-Human CD8 BUV496 clone RPA-T8 | BD Biosciences | 564804 | dilute 1:10 |
Mouse Anti-Human CD28 BV711 clone CD28.2 | Biolegend | 302948 | dilute 1:20 |
Mouse Anti-Human CD95 BUV737 clone DX2 | BD Biosciences | 564710 | dilute 1:10 |
Mouse Anti-Human CD14 BV510 clone M5E2 | Biolegend | 301842 | dilute 1:83 |
Mouse Anti-Human CD16 BV510 clone 3G8 | Biolegend | 302048 | dilute 1:167 |
Mouse Anti-Human CD20 BV510 clone 2H7 | Biolegend | 302340 | dilute 1:37 |
Anti-CD38-R PE clone OKT10 | NHP reagent recource | N/A | dilute 1:100 |
Mouse Anti-Human CD69 BUV395 clone FN50 | BD Biosciences | 564364 | dilute 1:10 |
Mouse Anti-Human HLA-DR APC-H7 clone G46-6 | BD Biosciences | 561358 | dilute 1:20 |
Mouse Anti-Human ICOS Alexa Fluor 700 clone C398.4A | Biolegend | 313528 | dilute 1:80 |
Instruments | |||
BioPrptect Containment Enclosure | Baker | ||
BD FACS Aria | BD Biosciences | ||
ProtoFlex Dual 96-well PCR system | Applied Biosystems/ThermoFisher | 4484076 | |
Quant Studio 6 qPCR instrument | Applied Biosystems/ThermoFisher | 4485694 | |
IFC controller HX | Fluidigm | IFC-HX | |
Biomark HD | Fluidigm | BMKHD-BMKHD |
Solicitar permissão para reutilizar o texto ou figuras deste artigo JoVE
Solicitar PermissãoThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados