É necessária uma assinatura da JoVE para visualizar este conteúdo. Faça login ou comece sua avaliação gratuita.
Method Article
Os métodos atuais descrevem uma abordagem não-ratiométrica para imagens subcompartimentais de cálcio de alta resolução in vivo em Caenorhabditis elegans usando indicadores de cálcio codificados geneticamente prontamente disponíveis.
A imagem com cálcio (Ca 2+) tem sido amplamente utilizada para examinar a atividade neuronal, mas está ficando cada vez mais claro que a manipulação subcelular de Ca2+ é um componente crucial da sinalização intracelular. A visualização da dinâmica subcelular de Ca2+ in vivo, onde os neurônios podem ser estudados em seus circuitos nativos e intactos, tem se mostrado tecnicamente desafiadora em sistemas nervosos complexos. A transparência e o sistema nervoso relativamente simples do nematoide Caenorhabditis elegans permitem a expressão célula-específica e a visualização in vivo de marcadores e marcadores fluorescentes. Entre eles estão indicadores fluorescentes que foram modificados para uso no citoplasma, bem como em vários compartimentos subcelulares, como as mitocôndrias. Este protocolo permite a obtenção de imagens não ratiométricas de Ca 2+ in vivo com uma resolução subcelular que permite a análise da dinâmica de Ca2+ até o nível de espinhas dendríticas individuais e mitocôndrias. Aqui, dois indicadores geneticamente codificados disponíveis com diferentes afinidades de Ca 2+ são usados para demonstrar o uso deste protocolo para medir os níveis relativos de Ca2+ dentro do citoplasma ou matriz mitocondrial em um único par de interneurônios excitatórios (AVA). Juntamente com as manipulações genéticas e observações longitudinais possíveis em C. elegans, este protocolo de imagem pode ser útil para responder a perguntas sobre como o manuseio de Ca2+ regula a função neuronal e a plasticidade.
Os íons cálcio (Ca2+) são carreadores de informação altamente versáteis em muitos tipos celulares. Nos neurônios, o Ca2+ é responsável pela liberação de neurotransmissores atividade-dependente, pela regulação da motilidade citoesquelética, pelo ajuste fino dos processos metabólicos, bem como por muitos outros mecanismos necessários para a adequada manutenção e função neuronal 1,2. Para garantir uma sinalização intracelular eficaz, os neurônios devem manter baixos níveis basais de Ca2+ em seu citoplasma3. Isso é realizado por mecanismos cooperativos de manipulação de Ca 2+, incluindo a captação de Ca2+ em organelas como o retículo endoplasmático (RE) e mitocôndrias. Esses processos, além do arranjo de canais iônicos permeáveis ao Ca 2+ na membrana plasmática, resultam em níveis heterogêneos de Ca2+ citoplasmático em todo o neurônio.
A heterogeneidade do Ca 2+ durante o repouso e a ativação neuronal permitem a regulação diversa e local-específica dos mecanismos dependentes do Ca 2+ 1. Um exemplo dos efeitos concentração-específicos do Ca 2+ é a liberação de Ca 2+ do RE através dos receptores inositol 1,4,5-trisfosfato (InsP 3). Baixos níveis de Ca2+ em combinação com InsP3 são necessários para a abertura do poro permeável ao cálcio do receptor. Alternativamente, altos níveis de Ca2+ inibem direta e indiretamente o receptor4. A importância da homeostase do Ca 2+ para a função neuronal adequada é apoiada por evidências que sugerem que a interrupção da manipulação e sinalização intracelular do Ca2+ é um passo precoce na patogênese de doenças neurodegenerativas e envelhecimento natural 5,6. Especificamente, a captação e liberação anormais de Ca2+ pelo PS e mitocôndrias estão ligadas ao aparecimento de disfunção neuronal na doença de Alzheimer, doença de Parkinson e doença de Huntington 6,7.
O estudo da dishomeostase de Ca 2+ durante o envelhecimento natural ou neurodegeneração requer a observação longitudinal dos níveis de Ca2+ com resolução subcelular em um organismo vivo e intacto, no qual a arquitetura celular nativa (isto é, o arranjo de sinapses e distribuição de canais iônicos) é mantida. Para este fim, este protocolo fornece orientação sobre o uso de dois sensores Ca2+ codificados geneticamente prontamente disponíveis para registro da dinâmica de Ca2+ in vivo com alta resolução espacial e temporal. Os resultados representativos obtidos usando o método descrito em C. elegans demonstram como a expressão de indicadores de Ca 2+ no citoplasma ou na matriz mitocondrial de neurônios individuais pode permitir a aquisição rápida de imagens fluorescentes (até 50 Hz) que ilustram a dinâmica do Ca 2+ com a capacidade adicional de discernir os níveis de Ca 2+ dentro de estruturas semelhantes à coluna vertebral e mitocôndrias individuais.
Access restricted. Please log in or start a trial to view this content.
1. Criação de cepas transgênicas
2. Configuração óptica
3. Preparação de vermes para aquisição de imagens
4. Aquisição de fluxos de imagens de alta resolução
5. Análise do fluxo de imagens
Access restricted. Please log in or start a trial to view this content.
Estes dois protocolos permitem a rápida aquisição de níveis diferenciais de Ca2+ dentro das regiões subcelulares e organelas de neuritos individuais in vivo com alta resolução espacial. O primeiro protocolo permite a dosagem citoplasmática de Ca2+ com alta resolução temporal e espacial. Isso é demonstrado aqui usando a expressão célula-específica de GCaMP6f nos interneurônios de comando glutamatérgico AVA15, cujos neuritos percorrem toda a extensão d...
Access restricted. Please log in or start a trial to view this content.
A primeira consideração ao implementar o método descrito envolve a seleção de um indicador Ca2+ com características ideais para a pergunta de pesquisa dada. Os indicadores citoplasmáticos de Ca 2+ tipicamente têm alta afinidade por Ca 2+, e a sensibilidade desses indicadores ao Ca2+ está inversamente relacionada à cinética (taxa liga/desliga)16,17. Isso significa que a sensibilidade ou a cinética do Ca2...
Access restricted. Please log in or start a trial to view this content.
Os autores declaram não haver interesses concorrentes.
Este trabalho foi apoiado pelo National Institutes of Health (NIH) (R01- NS115947 concedido a F. Hoerndli). Agradecemos também ao Dr. Attila Stetak pelo plasmídeo pAS1.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
100x/1.40 Oil objective | Olympus | UPlanSApo | |
10x/0.40 Objective | Olympus | UPlanSApo | |
22 mm x 22 mm Cover glass | VWR | 48366-227 | |
Agarose SFR | VWR | J234-100G | |
Beam homogenizer | Andor Technologies | Borealis upgrade to CSU-X1 | |
CleanBench laboratory table | TMC | With vibration control | |
Disposable culture tubes | VWR | 47729-572 | 13 mm x 100 mm |
Environmental chamber | Thermo Scientific | 3940 | Set to 20 °C |
Filter wheel or slider | ASI | For 25 mm diameter filters | |
FJH 185 | Caenorhabditis Genetics Center | FJH 185 | Worm strain |
FJH 597 | Caenorhabditis Genetics Center | FJH 597 | Worm strain |
GFP bandpass emission filter | Chroma | 525 ± 50 nm (25 mm diameter) | |
ILE laser combiner | Andor Technologies | 4 laser lines | |
ILE solid state 488 nm laser | Andor Technologies | 50 mW | |
ImageJ | National Institutes of Health | Version 1.52a | |
IX83 Spinning disk confocal microscope | Olympus | With Yokogawa CSU-X1 spinning disc | |
iXon Ultra EMCCD camera | Andor Technologies | ||
Low auto-fluorescence immersion oil | Olympus | Z-81226 | |
MetaMorph | Molecular Devices | Version 7.10.1 | |
Microscope control box | Olympus | IX3-CBH | |
Muscimol | MP Biomedical / Sigma | 02195336-CF | |
pAS1 | AddGene | 194970 | Plasmid |
pBSKS | Stratagene | ||
pCT61 | Plasmid available from Hoerndli/Maricq lab upon request | ||
pJM23 | Plasmid available from Hoerndli/Maricq lab upon request | ||
pKK1 | AddGene | 194969 | Plasmid |
Polybead microspheres | Polysciences Inc. | 00876-15 | 0.094 µm |
Stability chamber | Norlake Scientific | NSRI241WSW/8H | Set to 15 °C |
Stage controller | ASI | With filter wheel control | |
Standard microscope slide | Premiere | 9108W-E | 75 mm x 25 mm x 1 mm |
Touch panel controller | Olympus | I3-TPC | |
Z-drift corrector | Olympus | IX3-ZDC2 |
Access restricted. Please log in or start a trial to view this content.
Solicitar permissão para reutilizar o texto ou figuras deste artigo JoVE
Solicitar PermissãoThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados