Fonte: Roberto Leon, Departamento de Engenharia Civil e Ambiental, Virginia Tech, Blacksburg, VA
Em um laboratório anterior focado em concreto em compressão, observamos que o concreto pode suportar tensões muito grandes sob forças compressivas uniaxiais. No entanto, as falhas observadas não foram falhas compressivas, mas falhas ao longo de planos de cisalhamento onde ocorrem forças máximas de tração. Assim, é importante compreender o comportamento concreto na tensão e, particularmente, sua força máxima, pois isso governará tanto seu comportamento final quanto o de serviço. Do ponto de vista final, combinações de tensão e tensões de tesoura levarão a rachaduras e falhas imediatas e catastróficas. Por essa razão, o concreto raramente é usado em uma condição não reforçada em aplicações estruturais; a maioria dos membros de concreto será reforçada com aço para que essas rachaduras possam ser paradas e as larguras de crack limitadas. Este último é importante do ponto de vista da manutenção, pois controlar as larguras e a distribuição de crack é a chave para a durabilidade, pois isso impedirá que sais de desicação e produtos químicos similares penetram e corroam o aço de reforço.
Os objetivos deste experimento são três vezes: (1) realizar testes de cilindro dividido de tração para determinar a resistência à tração de concreto, (2) realizar testes de feixe para determinar a resistência à tração de concreto, e (3) demonstrar a influência do reforço de aço no comportamento, comparando o comportamento do feixe levemente reforçado com um não reforçado.
1. Teste de tensão dividida
A resistência à tração para a carga compressiva máxima alcançada durante o teste de tração dividida é dada pela seguinte fórmula:
ft = 2Pmax/ (πDL)
onde D é o diâmetro (polegadas), L é o comprimento (polegadas), e Pmax é a carga compressiva máxima (lb.) alcançada durante o teste de tração. Para estes testes, a média foi de 388 psi com desvio padrão de 22,2 psi (Tabela 1).