A subscription to JoVE is required to view this content. Sign in or start your free trial.
Abstract
Neuroscience
* These authors contributed equally
Multiple sclerosis (MS) is an autoimmune disease characterized by the infiltration of immune cells and demyelination in the central nervous system (CNS). Experimental autoimmune encephalomyelitis (EAE) serves as a prototypic animal model for studying MS. In this study, we aimed to investigate the role of CD4 T cells in the initiation and relapse of EAE, focusing on the activation phase and immune response. To create the EAE mice model, female mice were immunized with myelin oligodendrocyte glycoprotein (MOG)35-55 emulsified with complete Freund's adjuvant (CFA). Clinical scores were assessed daily, and results demonstrated that mice in the EAE group exhibited a classic relapsing-remitting pattern. Hematoxylin-eosin (H&E) and luxol fast blue (LFB) staining analysis revealed significant infiltration of inflammatory cells in the CNS and demyelination in EAE mice. Regarding the activation phase, both CD4+CD69+ effector T (Teff) cells and CD4+CD44+CD62L- effector memory T (Tem) cells may contribute to the initiation of EAE, however, the relapse stage was probably dominated by CD4+CD44+CD62L- Tem cells. Additionally, in terms of immune function, helper T (Th)1 cells are primarily involved in initiating the EAE. However, both Th1 and Th17 cells contribute to the relapse stage, and the immunosuppressive function of regulatory T (Treg) cells was inhibited during the EAE pathological process.
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved