JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Biology

Poplar Adventitious Roots Induced by Stem Canker Pathogens: An Experimental System for Studying Roots Biology and Light Response-Related Processes

Published: October 11th, 2024

DOI:

10.3791/67304

1State Key Laboratory of Tree Genetics and Breeding, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, 2Comprehensive Experimental Center in Yellow River Delta of Chinese Academy of Forestry, 3Beijing Haidian Kaiwen Academy High School, 4State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry

* These authors contributed equally

Abstract

Valsa sordida and Botryosphaeria dothidea are two crucial necrotrophic fungal pathogens that damage many plant hosts, particularly species in the genus Populus. These two fungal pathogens occur mainly in poplar branches, stems, and twigs, causing classic symptoms such as canker lesions, canopy dieback, and wilting. Pathogen inoculation is the most efficient pathway to study the mechanism of plant disease. Besides the canker lesions around the inoculation sites on the stems, a novel developmental phenomenon, copious adventitious roots (ARs) with bright red color, were observed in poplar species after stem canker pathogen inoculations. In this study, we described the method for inducing ARs using fungal pathogens in poplar trees. The crucial step of this method is the pathogen inoculation after (phloem or epidermis) girdling manipulation. The second crucial step is the application of the moisturizing material. Compared to the moisturizing manipulation with Parafilm, wrapping the inoculated sites with household polyethylene (PE) plastic wrap can produce colorful, numerous, and robust ARs in 20 days after girdling-inoculation. Finally, white ARs sprouted from the inoculated rings in the poplar stems after shading treatment (wrapping the stems with aluminum foil). This method introduces a novel experimental system for studying root development and morphogenesis, which is crucial for understanding the biology of root development, morphogenesis, and response under disease stress. Furthermore, when combined with shading treatment, this study can provide a convenient experimental system for investigating light response-related processes, for example, the biosynthesis of flavonoids, anthocyanins, or other related metabolites, and genes or transcription factors involved in these processes.

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved