Войдите в систему

Большая часть ДНК находится в ядре клетки. Однако некоторые органеллы в цитоплазме клетки, такие как хлоропласты и митохондрии, также имеют собственную ДНК. Эти органеллы реплицируют свою ДНК независимо от ядерной ДНК клетки, в которой они находятся. Неядерное наследование описывает наследование генов от структур, отличных от ядра.

Митохондрии присутствуют как в клетках растений, так и в клетках животных. Они считаются «электростанциями». эукариотических клеток, потому что они расщепляют глюкозу с образованием энергии, которая питает клеточную активность. Митохондриальная ДНК состоит примерно из 37 генов, и многие из них участвуют в этом процессе, называемом окислительным фосфорилированием.

Хлоропласты содержатся в растениях и водорослях и являются участками фотосинтеза. Фотосинтез позволяет этим организмам производить глюкозу из солнечного света. ДНК хлоропластов состоит примерно из 100 генов, многие из которых участвуют в фотосинтезе.

В отличие от хромосомной ДНК в ядре, хлоропластная и митохондриальная ДНК не подчиняются менделевскому предположению о том, что половина генетического материала организма происходит от каждого из родителей. Это связано с тем, что сперматозоиды обычно не вносят ДНК митохондрий или хлоропластов в зиготы во время оплодотворения.

В то время как сперматозоид в первую очередь вносит один гаплоидный набор ядерных хромосом в зиготу, яйцеклетка вносит свои органеллы в дополнение к своим ядерным хромосомам. Зиготы (и хлоропласты в растительных клетках) обычно получают митохондрии и хлоропласты исключительно из яйцеклетки; это называется материнской наследственностью. Материнское наследование - это разновидность неядерного или экстраядерного наследования.

Почему митохондрии и хлоропласты имеют собственную ДНК? Наиболее популярное объяснение - эндосимбиотическая теория. Эндосимбиотическая теория утверждает, что митохондрии и хлоропласты когда-то были независимыми прокариотами. В какой-то момент они присоединились к эукариотическим клеткам-хозяевам и вступили в симбиотические отношения, которые приносят пользу обеим сторонам.

Теги

Non nuclear InheritanceEukaryotic CellsMitochondriaPlastidsCytoplasmic DNAOrganellesCircular DNA MoleculesCell DivisionZygoteMatrilineal FashionMetabolic DisordersUniparental InheritanceLeaf ColorChloroplastsMitochondria

Из главы 12:

article

Now Playing

12.17 : Неядерные наследственность

Классическая и современная генетика

21.3K Просмотры

article

12.1 : Генетический язык

Классическая и современная генетика

96.9K Просмотры

article

12.2 : Решетки Пеннетта

Классическая и современная генетика

106.6K Просмотры

article

12.3 : Моногибридное скрещивание

Классическая и современная генетика

224.6K Просмотры

article

12.4 : Дигибридное скрещивание

Классическая и современная генетика

69.7K Просмотры

article

12.5 : Генеалогический анализ

Классическая и современная генетика

80.2K Просмотры

article

12.6 : Законы вероятности

Классическая и современная генетика

36.3K Просмотры

article

12.7 : Признаки множественных аллелей

Классическая и современная генетика

33.6K Просмотры

article

12.8 : Полигенные признаки

Классическая и современная генетика

64.0K Просмотры

article

12.9 : Эпистаз

Классическая и современная генетика

42.0K Просмотры

article

12.10 : Плейотропия

Классическая и современная генетика

36.3K Просмотры

article

12.11 : Природа и кормление

Классическая и современная генетика

20.2K Просмотры

article

12.12 : Закон сегрегации

Классическая и современная генетика

60.1K Просмотры

article

12.13 : Закон независимого распределения генов

Классическая и современная генетика

50.3K Просмотры

article

12.14 : Признаки, связанные с X-хромосомой

Классическая и современная генетика

49.7K Просмотры

See More

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены