JoVE Logo

Войдите в систему

13.23 : Poiseuille's Law and Reynolds Number

Any fluid in a horizontal tube can flow due to pressure differences—fluid flows from high to low pressure. The flow rate (Q) is the ratio of pressure difference and resistance through a horizontal tube. The greater the pressure difference, the higher the flow rate. The flow resistance is expressed as:

Static equilibrium, ΣF=0, ΣM=0, force diagram, mechanical balance illustration, educational physics.

When combined with the flow rate (Q), this relation gives Poiseuille's law for the laminar flow of an incompressible fluid in a tube.

Free electron laser diagram illustrating optical amplification process and light emission pathways.

All factors that affect the flow rate, except pressure, are included in resistance. Resistance depends on the dimensions of the tube and the viscosity of the fluid. Resistance is directly proportional to the length of the tube and inversely proportional to the fourth power of the radius of the tube.

In the case of a non-viscous fluid, the fluid flow is frictionless, and the resistance to flow is zero. This results in the motion of all the layers with the same velocity. In contrast, resistance to fluid flow in viscous fluids is non-zero. In such cases, the speed is greatest for the midstream and decreases towards the edge of the tube. We can see the effect in a Bunsen burner flame.

Flow can be considered to be laminar or turbulent as classified by the Reynolds number. If the Reynolds number is below 2,000, the flow is laminar; if it is greater than 3,000, the flow is turbulent. Flow is considered to be unstable and may show chaotic behavior if the Reynolds number falls between 2,000 and 3,000. Unstable flow indicates that it is initially laminar, but due to obstructions or surface roughness, the flow can become turbulent, and it may oscillate randomly between being laminar and turbulent. Here, a tiny variation in one factor can have an exaggerated (or nonlinear) effect on a system, thus showing chaotic behavior.

This text is adapted from Openstax, University Physics Volume 1, Section 14.7: Viscosity and Turbulence.

Теги

Poiseuille s LawReynolds NumberFluid FlowPressure DifferenceFlow RateResistanceLaminar FlowIncompressible FluidViscosityTurbulent FlowFlow StabilityChaotic BehaviorNon viscous FluidFrictionless FlowBunsen Burner Flame

Из главы 13:

article

Now Playing

13.23 : Poiseuille's Law and Reynolds Number

Fluid Mechanics

6.3K Просмотры

article

13.1 : Характеристики жидкостей

Fluid Mechanics

3.7K Просмотры

article

13.2 : Плотность

Fluid Mechanics

14.6K Просмотры

article

13.3 : Давление жидкостей

Fluid Mechanics

15.4K Просмотры

article

13.4 : Изменение атмосферного давления

Fluid Mechanics

2.0K Просмотры

article

13.5 : Закон Паскаля

Fluid Mechanics

8.0K Просмотры

article

13.6 : Применение закона Паскаля

Fluid Mechanics

8.0K Просмотры

article

13.7 : Манометры

Fluid Mechanics

3.0K Просмотры

article

13.8 : Плавучесть

Fluid Mechanics

9.2K Просмотры

article

13.9 : Принцип Архимеда

Fluid Mechanics

7.7K Просмотры

article

13.10 : Плотность и принцип Архимеда

Fluid Mechanics

6.5K Просмотры

article

13.11 : Ускоряющие жидкости

Fluid Mechanics

998 Просмотры

article

13.12 : Поверхностное натяжение и поверхностная энергия

Fluid Mechanics

1.3K Просмотры

article

13.13 : Избыточное давление внутри капли и пузыря

Fluid Mechanics

1.6K Просмотры

article

13.14 : Угол контакта

Fluid Mechanics

11.6K Просмотры

See More

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены