JoVE Logo

Войдите в систему

7.8 : Relation Between the Distributed Load and Shear

Understanding the relationship between the distributed load and shear force in structural analysis is crucial for analyzing beams subjected to various loading conditions. Consider the case of a beam experiencing a distributed load, two concentrated loads, and a couple moment.

Static equilibrium diagram with forces F1, F2; equations ΔF=w(x)Δx, Δk=k(Δx); spring load setup.

The connection between the shear force and the distributed load for the given case can be established following the given procedure. First, consider an elemental section on the beam free from any concentrated load or couple moment. We can draw a free-body diagram to analyze the forces acting on this section. The diagram will consist of the distributed load acting along the length of the beam, the shear force V(x) acting on the right-hand side of the section, and an incremental shear force dV added to maintain the equilibrium.

To maintain equilibrium in the vertical direction, the shear force acting on the right-hand side of the section should be incremented by a small and finite amount, ΔV. The resultant force of the distributed load, w(xx, acts at a fractional distance from the right end of the section.

Using the equation of equilibrium for vertical force, the following relation between shear and load can be obtained:

Change in potential energy formula, ΔV=-w(x)Δx, static equilibrium, concept diagram.

Next, we will divide both sides of the equation by Δx and let Δx approach zero:

Static equilibrium equation \( \frac{dV}{dx} = -w(x) \), formula for load distribution analysis.

This equation shows that the slope of the shear force is equal to the distributed load intensity.

Finally, we can rearrange the equation and integrate the distributed load over the elemental section between two arbitrary points, Q and R:

Static equilibrium equation: VR-VQ=-∫w(x)dx, integral formula for physics, mathematics.

This integral equation demonstrates the relationship between the change in shear force and the area under the load curve. The difference in shear force between points Q and R equals the area under the distributed load curve between these two points.

Теги

Distributed LoadShear ForceStructural AnalysisBeam Loading ConditionsFree body DiagramEquilibriumIncremental Shear ForceVertical Force EquilibriumShear Force SlopeLoad IntensityIntegral EquationLoad Curve Area

Из главы 7:

article

Now Playing

7.8 : Relation Between the Distributed Load and Shear

Internal Forces

585 Просмотры

article

7.1 : Правило знаков

Internal Forces

1.9K Просмотры

article

7.2 : Нормальная и поперечная сила

Internal Forces

2.0K Просмотры

article

7.3 : Изгибающие и крутящие моменты

Internal Forces

3.5K Просмотры

article

7.4 : Внутренние нагрузки в элементах конструкций: решение проблемы

Internal Forces

1.2K Просмотры

article

7.5 : Балки

Internal Forces

1.3K Просмотры

article

7.6 : Диаграмма сдвига

Internal Forces

717 Просмотры

article

7.7 : Диаграмма изгибающего момента

Internal Forces

956 Просмотры

article

7.9 : Соотношение между сдвигом и изгибающим моментом

Internal Forces

947 Просмотры

article

7.10 : Диаграмма сдвиговых и изгибающих моментов: решение проблем

Internal Forces

1.2K Просмотры

article

7.11 : Кабель, подвергающийся воздействию сосредоточенных нагрузок

Internal Forces

769 Просмотры

article

7.12 : Кабель под действием распределенной нагрузки

Internal Forces

614 Просмотры

article

7.13 : Кабель под действием собственного веса

Internal Forces

410 Просмотры

article

7.14 : Кабель: решение проблем

Internal Forces

300 Просмотры

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены