JoVE Logo

Войдите в систему

6.3 : Phasors

Phasors are a powerful mathematical tool used to analyze alternating current (AC) circuits. They provide a complex number representation of sinusoids, with the magnitude of the phasor equating to the amplitude of the sinusoid and the angle of the phasor representing the phase measured from the positive x-axis.

One of the significant benefits of using phasors is that they simplify the analysis of AC circuits by eliminating the time dependence of the current and voltage. This transformation allows an AC circuit to be analyzed as if it were its equivalent direct current (DC) form, making calculations more straightforward.

Phasors can be represented in different forms - rectangular, polar, or exponential - by using Euler's identity, a fundamental formula in complex analysis that establishes a deep relationship between trigonometric and exponential functions.

To obtain the phasor of a sinusoid in sine form, one must first convert it into cosine form and then express it as the real part of a complex number. The phasor of this sinusoid equals the time-independent part of this complex number. Conversely, the sinusoid of a given phasor can be obtained by multiplying the phasor with a time factor and taking its real part.

In a graphical context, phasors can be visualized as rotating vectors, or 'sinors,' spinning in a counterclockwise direction on a complex plane with a constant angular frequency. The diagrams that depict these rotating sinors are known as phasor diagrams.

A key concept in understanding the phasor diagram is that the projection of the rotating sinors onto the real axis represents the sinusoids. This means that the horizontal position of the sinor at any point in time corresponds to the instantaneous value of the sinusoidal function it represents.

Теги

PhasorsAlternating Current ACSinusoid RepresentationComplex NumberAmplitudePhaseDirect Current DCEuler s IdentityPhasor DiagramRotating VectorsSinusoidal FunctionTime independent PartGraphical Visualization

Из главы 6:

article

Now Playing

6.3 : Phasors

AC Circuit Analysis

481 Просмотры

article

6.1 : Sinusoidal Sources

AC Circuit Analysis

465 Просмотры

article

6.2 : Graphical and Analytic Representation of Sinusoids

AC Circuit Analysis

367 Просмотры

article

6.4 : Phasor Arithmetics

AC Circuit Analysis

236 Просмотры

article

6.5 : Phasor Relationships for Circuit Elements

AC Circuit Analysis

478 Просмотры

article

6.6 : Kirchoff's Laws using Phasors

AC Circuit Analysis

382 Просмотры

article

6.7 : Impedances and Admittance

AC Circuit Analysis

544 Просмотры

article

6.8 : Impedance Combination

AC Circuit Analysis

308 Просмотры

article

6.9 : Node Analysis for AC Circuits

AC Circuit Analysis

281 Просмотры

article

6.10 : Mesh Analysis for AC Circuits

AC Circuit Analysis

333 Просмотры

article

6.11 : Source Transformation for AC Circuits

AC Circuit Analysis

515 Просмотры

article

6.12 : Thévenin Equivalent Circuits

AC Circuit Analysis

177 Просмотры

article

6.13 : Norton Equivalent Circuits

AC Circuit Analysis

324 Просмотры

article

6.14 : Superposition Theorem for AC Circuits

AC Circuit Analysis

599 Просмотры

article

6.15 : Op Amp AC Circuits

AC Circuit Analysis

176 Просмотры

See More

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены