Для просмотра этого контента требуется подписка на Jove Войдите в систему или начните бесплатную пробную версию.
Method Article
Мезоскопические флуоресценции томографии работает за пределы проникновения ткани срезов флуоресцентной микроскопии. Методика основана на мульти-проекции освещением и фотонной описание транспорта. Мы демонстрируем в естественных условиях всего тела 3D визуализация морфогенеза GFP-экспрессирующих крыло имагинальных дисков Дрозофилы.
Visualizing developing organ formation as well as progession and treatment of disease often heavily relies on the ability to optically interrogate molecular and functional changes in intact living organisms. Most existing optical imaging methods are inadequate for imaging at dimensions that lie between the penetration limits of modern optical microscopy (0.5-1mm) and the diffusion-imposed limits of optical macroscopy (>1cm) [1]. Thus, many important model organisms, e.g. insects, animal embryos or small animal extremities, remain inaccessible for in-vivo optical imaging.
Although there is increasing interest towards the development of nanometer-resolution optical imaging methods, there have not been many successful efforts in improving the imaging penetration depth. The ability to perform in-vivo imaging beyond microscopy limits is in fact met with the difficulties associated with photon scattering present in tissues. Recent efforts to image entire embryos for example [2,3] require special chemical treatment of the specimen, to clear them from scattering, a procedure that makes them suitable only for post-mortem imaging. These methods however evidence the need for imaging larger specimens than the ones usually allowed by two-photon or confocal microscopy, especially in developmental biology and in drug discovery.
We have developed a new optical imaging technique named Mesoscopic Fluorescence Tomography [4], which appropriate for non-invasive in-vivo imaging at dimensions of 1mm-5mm. The method exchanges resolution for penetration depth, but offers unprecedented tomographic imaging performance and it has been developed to add time as a new dimension in developmental biology observations (and possibly other areas of biological research) by imparting the ability to image the evolution of fluorescence-tagged responses over time. As such it can accelerate studies of morphological or functional dependencies on gene mutations or external stimuli, and can importantly, capture the complete picture of development or tissue function by allowing longitudinal time-lapse visualization of the same, developing organism.
The technique utilizes a modified laboratory microscope and multi-projection illumination to collect data at 360-degree projections. It applies the Fermi simplification to Fokker-Plank solution of the photon transport equation, combined with geometrical optics principles in order to build a realistic inversion scheme suitable for mesoscopic range. This allows in-vivo whole-body visualization of non-transparent three-dimensional structures in samples up to several millimeters in size.
We have demonstrated the in-vivo performance of the technique by imaging three-dimensional structures of developing Drosophila tissues in-vivo and by following the morphogenesis of the wings in the opaque Drosophila pupae in real time over six consecutive hours.
Дрозофилы запасы, используемые в данном эксперименте являются следующие:
Для всех экспериментов, UAS-Gal4 система была использована для гиперэкспрессией GFP в ткани интерес (т.е. слюнных желез или крыло диски). В частности, самок трансгенных с соответствующим Gal4 были скрещены на UAS-EGFP трансгенных товарищей. Крестов было выращено при 25 ° С в увлажненной инкубатора. Когда куколки начать заполнение флаконах (примерно 5-6 дней после начала крест), они были отобраны для GFP флуоресценции при белом prepupal этапе (0-1 ч после формирования пупария) и собранных для томографии.
Монтаж дрозофилы
Модель определения Вперед
Изображений слюнных желез
Time-Lapse изображений
Гистология
Time-Lapse Гистология
Рисунок 1. Пожалуйста, нажмите здесь , чтобы увидеть др.arger версия рисунке 1.
В естественных условиях реконструкции куколки дела и GFP-экспрессирующих слюнных желез D. MELANOGASTER prepupa (Масштаб бар, 500 мкм) с соответствующими гистологии (синий, DAPI окрашивания; зеленый, GFP флуоресценции) показана на рис 1 (а). Покадровый серии изображений D. MELANOGASTER крыло имагинальн?...
The authors have nothing to disclose.
С. Vinegoni признает поддержке Национального института здоровья (NIH) предоставлять 1-RO1-EB006432.
Запросить разрешение на использование текста или рисунков этого JoVE статьи
Запросить разрешениеThis article has been published
Video Coming Soon
Авторские права © 2025 MyJoVE Corporation. Все права защищены