Для просмотра этого контента требуется подписка на Jove Войдите в систему или начните бесплатную пробную версию.
Method Article
Конфокальной микроскопии Покадровый является мощным средством полезно для характеристики эмбрионального развития. Здесь мы описываем методологию и охарактеризовать черепно-лицевой морфогенез в дикого типа, а также PDGFRA, smad5 и SMO мутантные эмбрионы.
Покадровой обработки изображений является метод, который позволяет для прямого наблюдения процесса формообразования, или генерация формы. Благодаря своей оптической прозрачности и аменабельности к генетической манипуляции, данио эмбрионов стал популярным модельным организмом, с которой для выполнения покадровой анализ формообразования в живых эмбрионов. Конфокальной визуализации живого данио эмбриона требует, чтобы ткань интерес упорно метили флуоресцентным маркером, таким как трансгена или вводили краситель. Процесс требует, чтобы эмбрион находится под наркозом и удерживается на месте таким образом, что здоровое развитие протекает нормально. Параметры для визуализации необходимо установить для учета для трехмерного роста и сбалансировать требования решении отдельных клеток при получении быстрые снимки развития. Наши результаты демонстрируют способность выполнять долгосрочный в естественных изображений флуоресцентных меченных эмбрионов данио и обнаруживать различные поведения тканей вчерепная нервного гребня, которые вызывают черепно-лицевые аномалии. Развивающие задержки, вызванные анестезией и монтажа минимальны, и эмбрионы невредимым процессом. Покадровый отображаемого эмбрионы могут быть возвращены в жидкой среде, а затем отображены или фиксированной на более поздних точек в развитии. С увеличением обилия трансгенных данио линий и хорошо характеризуется отображением судьбы и методов трансплантации, визуализации любого желаемого ткани можно. Таким образом, покадровой в естественных изображений сочетает мощно с данио генетических методов, в том числе анализа мутантных и микроинъекции эмбрионы.
Черепно-лицевой морфогенез является сложным многоэтапным процессом, который требует скоординированных взаимодействий между несколькими типами клеток. Большинство черепно-скелета происходит от клеток нервного гребня, многие из которых должен мигрировать из дорсальной части нервной трубки в переходных структурах, называемых глоточных арки 1. Как и во многих тканях, морфогенез черепно-лицевой скелет является более сложным, чем можно понять, статических изображений эмбрионов в конкретных развития времени. Хотя это занимает много времени для выполнения, в естественных условиях покадровой микроскопии обеспечивает непрерывный взгляд на клетки развивающегося эмбриона и тканей. Каждое изображение в серии покадровой придает контекст с другими, и помогает следователь движение к выведению почему явление происходит, а не выводя то, что происходит в это время.
В естественных изображений, таким образом, мощным описательный инструмент для экспериментальных подходов кдеконструировать пути, которые ведут морфогенез. Данио рерио Данио является популярным генетическая модель позвоночных эмбрионального развития, и особенно хорошо подходит для работы с изображениями в естественных морфогенеза. Современные, удобные методы трансгенеза и геномной модификации быстро развиваются количество инструментов, доступных для рыбок данио исследователей. Эти инструменты повышения уже надежные методы для генетических манипуляций и микроскопии. В естественных изображений практически любого ткани практически в любой желаемой генетической контексте ближе к реальности, чем фантазии.
Морфогенетические движения фарингеальных дуг руководствуются взаимодействия между нервного гребня и прилегающей эпителия, как эктодермы и энтодермы сигнализации. Есть множество сигнальных молекул, выраженные эпителия, которые необходимы для управления морфогенез черепно-лицевых скелетных элементов. Среди этих сигнальных молекул, Еж Соник (Тсс) является критически важным еили черепно-лицевого развития 2-8. Тсс выражается как в устной эктодермы и глотки энтодермы 2,6,9,10. Экспрессия Shh в энтодерме регулирует морфогенетические движения арок 10, структурирование нервного гребня в арках 10, и роста черепно-лицевой скелет 11.
Сигнализации Bmp также критически важно для черепно-лицевого развития 12 и может изменить морфогенез фарингеальных дуг. Сигнализации Bmp регулирует спинной / вентральной паттерна гребня внутри фарингеальных дуг 13,14. Срыв smad5 у рыбок данио вызывает серьезные дефекты небные и отказ хрящей в Меккеля на предохранитель соответствующим по срединной линии 15. Кроме того, мутанты также отображать сокращения и слияния в вентральной элементов хряща, с 2-го, 3-го, а иногда и 4-й глотки арки элементов, слитых на средней линии 15. Эти гибриды настоятельно рекомендую, что передача сигналов Bmp направляет морфогенез этих глотки элементов.
Сигнализации PDGF необходимо для черепно-лицевого развития, но имеет неизвестные роли в глотки арки формообразования. Оба мышей и рыбок данио мутанты PDGFRA имеют глубокое средней зоны лица clefting 16-18. По крайней мере, у рыбок данио это средней зоны лица clefting является из-за сбоя надлежащего миграции клеток нервного гребня 16. Клетки нервного гребня продолжают выражать PDGFRA после того как они вошли в глотки арки. Кроме того, PDGF лиганды выражаются лица эпителия и в фарингеальных дуг 16,19,20, таким образом сигнализации PDGF может также играть роль в морфогенезе фарингеальных дуг следующих миграции. Тем не менее, анализ морфогенеза фарингеальных дуг в PDGFRA мутантов не были выполнены.
Здесь мы демонстрируем в естественных условиях конфокальной микроскопии pharyngulстадии трансгенных данио и описать морфогенез фарингеальных дуг в течение этого периода. Мы также продемонстрировать, ткани поведения, которые страдают от мутаций, которые нарушают BMP, PDGF и Тсс сигнальные пути.
Access restricted. Please log in or start a trial to view this content.
1. Животноводство и мутантных аллелей
2. Приготовление растворов и реализует
Примечание: Все решения и реализует можно сделать заранее и хранить для будущего использования.
3. Монтаж эмбрионов данио для конфокальной микроскопии (см. Рисунок 1)
4. Покадровый конфокальной микроскопии трансгенных эмбрионов рыбок данио
(Этот протокол был оптимизирован для Zeiss LSM 710 конфокальной микроскопии насING обработки изображений ZEN, и может быть модифицирована для использования с другими системами.)
Access restricted. Please log in or start a trial to view this content.
В эмбрионов дикого типа, после нервной населения гребня, глоточные арки удлиненные вдоль передней / задней и спинной / вентральной осей при движении в ростральном направлении (Movie 1). В 30 часов после оплодотворения (ФВЧ), длина передней / задней первого глотки арки между 1,8-1,9 раза ?...
Access restricted. Please log in or start a trial to view this content.
Покадровый конфокальной микроскопии является мощным инструментом для анализа развития. Здесь мы демонстрируем полезность метода в изучении глотки арки морфогенез у рыбок данио, которые мутант для важных сигнальных использованием трансгенных что помечает клетки нервного гребня. В д?...
Access restricted. Please log in or start a trial to view this content.
Авторы заявляют, что они не имеют конкурирующие финансовые интересы.
Мы благодарим Мелисса Гриффин и Дженна Rozacky для их квалифицированного ухода рыбы. ДПМ благодаря EGN для написания помощь, щедрость и терпение. Эта работа была поддержана NIH / NIDCR R01DE020884 чтобы JKE.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
6 lb Test monofilament line | Cortland Line Company | SLB16 | |
Agarose I | Amresco | 0710 | |
Argon laser | LASOS Lasertechnik GmbH | LGN 3001 | |
Calcium chloride | Sigma-Aldrich | C8106 | |
Capillary tubing, 100 mm, 0.9 mm ID | FHC | 30-31-0 | |
Clove oil | Hilltech Canada, Inc. | HB-102 | |
High vacuum grease | Dow Corning | 2021846-0807 | |
Isotemp dry-bath incubator | Fisher Scientific | 2050FS | |
Laser scanning microscope | Carl Zeiss AG | LSM 710 | |
Magnesium sulfate hexahydrate | Sigma-Aldrich | 230391 | |
Microscope cover glass, 22 x 22-1 | Fisher Scientific | 12-542-B | |
Microscope cover glass, 24 x 60-1 | Fisher Scientific | 12-545-M | |
Potassium chloride | Fisher Scientific | M-11321 | |
Potassium phosphate dibasic | Sigma-Aldrich | P3786 | |
Sodium chloride | Fisher Scientific | M-11624 | |
Sodium phosphate dibasic | Sigma-Aldrich | S7907 | |
TempController 2000-2 | PeCon GmbH | ||
Tricaine-S | Western Chemical, Inc. |
Access restricted. Please log in or start a trial to view this content.
Запросить разрешение на использование текста или рисунков этого JoVE статьи
Запросить разрешениеThis article has been published
Video Coming Soon
Авторские права © 2025 MyJoVE Corporation. Все права защищены