Для просмотра этого контента требуется подписка на Jove Войдите в систему или начните бесплатную пробную версию.
Method Article
Immunolabeling для анализа различных популяций микротрубочек в развивающемся мозге данио рерио описаны методы, которые широко применимы для других тканей. Первый протокол излагаются оптимизированный метод для immunolabeling стабильное и динамичное микротрубочек. Второй протокол предоставляет метод для изображений и количественно зарождающейся микротрубочек специально.
Микротрубочки (МТС) являются динамичной и хрупких структур, которые являются сложные изображения в естественных условиях, особенно в позвоночных эмбрионы. Immunolabeling методы описаны здесь, чтобы проанализировать различные популяции МТС в развивающихся нервной трубки zebrafish эмбриона. В то время как основное внимание уделяется нервной ткани, эта методология широко применяется для других тканей. Процедурах оптимизированы для рано для середины somitogenesis этап эмбрионов (1 Сомит до 12 сегменты), однако они могут быть адаптированы к целому ряду других этапов с относительно незначительными изменениями. Первый протокол предоставляет метод для оценки пространственного распределения стабильное и динамичное МТС и выполнить количественный анализ этих групп населения с программным обеспечением обработки изображений. Этот подход дополняет существующие средства изображения микротрубочек динамики и распределения в режиме реального времени, используя трансгенных линий или переходных выражение тегами конструкций. Действительно такие инструменты очень полезны, однако они не легко различать динамичного и стабильного МТС. Способность изображения и анализировать эти собственный микротрубочек населения имеет важные последствия для понимания механизмов поляризации клеток и морфогенеза. Второй протокол описывает метод для анализа нарождающихся МТС специально. Это достигается путем захвата de novo роста свойства МТС со временем, после деполимеризацию микротрубочек с наркотиками Нокодазол и восстановительный период после вымывания наркотиков. Этот метод еще не был применен к изучению МТС в zebrafish эмбриона, но является ценным assay для расследования в естественных условиях функции белков, замешанных в сборку микротрубочек.
Микротрубочки (МТС) являются полимерами из α - и β-тубулина, собрать в линейной protofilaments, некоторые из которых в совокупности образуют полая трубка1,2. МТС, поляризационные структуры, с быстро растущей плюс концы и медленнорастущие минус концы, которые крепятся на Центросома или другие организации микротрубочек центр (КТВМ)3. De novo Формирование MT инициируется нуклеации на кольцо γ-тубулина комплекс (γ-Турецкая), которая предоставляет шаблон для Ассамблеи МТ4. В любой заданной ячейки две популяции МТС можно выделить то поворот над разными темпами. Динамический МТС исследовать их клеточной среды, переключение фаз роста и усадки в процессе, известном как Динамическая нестабильность5. В отличие от динамических МТС стабильной МТС межвегетационный и имеют более длительный период полувыведения, чем динамические МТС6.
Десятилетия исследований в клеточной биологии предоставила сложный спектр инструментов для изучения MT структуры и функции и привели к большой объем знаний об этих цитоскелетных элементов. Например, МТС играют центральную роль в создании и поддержании клеток полярности, который объясняется не только их внутреннюю полярность, но и для дифференциальной субцеллюлярные распределения стабильной по сравнению с динамической МТС7, 8. напротив, гораздо меньше понимается о MT архитектуры и функции в более сложной трехмерной (3-D) средах, таких как позвоночных эмбриона, отчасти из-за проблемы визуализации цитоскелета MT с высоким разрешением. Несмотря на это ограничение, Последнее поколение GFP-выражения трансгенных линий лейбл МТС или переходных выражение дневно тегами MT маркеров увеличилась нашего понимания динамических изменений, которые претерпевают МТС и их сотовых и роль в процессе развития в zebrafish эмбриона. Вся сеть MT может отражаться в трансгенных линий в котором тубулин – либо непосредственно помечены9 или тубулин полимеров косвенно помечены с помощью MT-связанных белков Даблкортин как киназы (Dclk) или Ensconsin (EMTB)10, 11. Другие линии (и конструкции) были созданы которые включить оценку MT внутреннюю полярность, специально маркировки МТ плюс концы или Центросома якорь минус заканчивается11,12,13, 14. сила этих инструментов заключается в способности учиться жить, MT динамика в развивающихся организмов. Такие исследования показали, например, пространственных и динамическое распределение МТС в конкретных клеточных популяций, ориентацию митотическая шпинделей в тканях происходят морфогенез (индикатор плоскости деление клеток), полярность MT полимера как она относится к процессам таких ячеек удлинение и миграции и темпы роста MT, определяется кометы скорость9,,1315. Ограничение этих инструментов заключается в том, что они не в легко различать стабильное и динамичное население MT.
Рисование от богатых ячейки биологии литературы, immunolabeling методы для изображения стабильное и динамичное МТС в zebrafish эмбриона описаны здесь, которые дополняют использования трансгенных линий. Широкое использование таких методов immunolabeling в zebrafish несколько сдерживается трудностями в сохранении целостности MT во время процедуры фиксации. Протокол 1 излагаются оптимизированный метод для immunolabeling всего, динамический, и стабильная МТС в сечения развивающихся данио рерио задний мозг. Кроме того простой метод, с помощью коммерчески доступное программное обеспечение описано для количественной оценки этих MT населения. Стабильные МТС отличаются от динамических МТС, основанные на несколько столб-поступательные изменения α-тубулина, например ацетилирования и detyrosination, которые накапливаются на стабильной МТС с течением времени16,17. В zebrafish эмбриона ацетилирования происходит на цилиарных и аксональной МТС, но не на стабильной межфазной МТС18, ограничивает полезность этого маркера к подмножеству стабилизированный МТС. В отличие от detyrosination, по-видимому, происходят на все стабильные МТС в zebrafish эмбриона18. Этот столб-поступательные изменения предоставляет карбоксильную терминал глутаминовой кислоты (detyrosinated тубулин) α-тубулина18 и могут быть обнаружены с помощью анти Glu тубулина19. Хотя detyrosination возникает преференциально на стабильной МТС, экспериментальные свидетельства указывает, что этот столб-поступательные изменения является результатом, а не причиной, MT стабильности16. Взаимные MT населения, состоящий из динамических МТС, отличается использованием антитела, анти-Tyr-тубулина, что конкретно признает tyrosinated форме α-тубулина19. После immunolabeling с этими маркеры и конфокальная томография количественный анализ МТС (длина, число и относительное изобилие) могут выполняться в определенных регионах развивающихся нервной трубки. Рациональный метод предоставляется здесь для проведения этого анализа с использованием трехмерной обработки изображений программное обеспечение. Этот метод может применяться для рассмотрения вопросов, касающихся морфогенеза и создание или созревания клеток полярности20. Действительно разработка поляризованные массивы стабильной МТС сопровождает многие развития событий, включая фоторецепторных морфогенеза21, эпителизация клеток в развивающихся нервной трубки18 и аксон формирования8.
2 протокол описывает в vivo адаптация assay биологии клетки для анализа МТС во время их Ассамблеи фазы (нуклеации/Анкоридж и роста)22,23. Нарождающейся МТС тому на Центросома и впоследствии привязан к subdistal придатков мать Центриоль23. Описан метод для анализа зарождающейся MT отрастание после деполимеризации. Этот протокол предоставляет сведения о Нокодазол лечения деполимеризуют МТС, процедура размыва наркотиков и период восстановления после лечения. MT re рост контролируется на регулярные промежутки временисмыв s пост immunolabeling с маркерами для всего МТС (анти-β-тубулина) наряду с маркерами для Центросома (анти-γ-тубулина) и ядра (4', 6-diamidino-2-phenylindole (DAPI)), в общем порядке, описанные в протокол 1. MT деполимеризации шаг настоящего Протокола имеет важное значение, поскольку позволяет оценки de novo MT роста, а не расширение существующих МТС. Поэтому этот метод отличается от других опубликованных процедур для измерения темпов роста MT (в отсутствии деполимеризации), используя маркер плюс чаевые как конец связывая протеин 3 сливается с зеленого флуоресцентного белка (EB3-GFP), как показано в Чан et al., 2012-11. Кроме того, этот assay особенно полезна для анализа эмбрионов дефектных в Ассамблее de novo MT, как сообщалось ранее мутантов NEDD1 , в которых вербовки γ-тубулина в Центросома нарушается, что приводит к неполной формирование нервной трубки и нейрональных дефекты24.
этика заявление: процедуры описано ниже следуют Университет штата Мэриленд Балтимор округа животных ухода руководящих.
1. анализ стабильного и динамичного МТС с использованием Immunolabeling (протокол 1)
2. De Novo MT Ассамблеи Assay (протокол 2)
Анализ стабильное и динамичное МТС с использованием immunolabeling
В протокол 1распределение MT субпопуляциях во время ранних (нейронных Киль) и поздних стадиях развития нервной трубки (нейронных стержень) выявлено, используя Glu тубулина и Tyr тубулина как м...
В настоящее время существует множество методов для визуализации динамики MT в начале развития данио рерио, начиная от живых изображений тегами молекул immunolabeling из фиксированной ткани11,12,,1314. Хотя МТС в одной ячейке мож...
Авторы не имеют ничего сообщать.
Конфокальный микроскоп был приобретен с средств от США Фонд национальной науки (NSF) Грант #DBI-0722569. Поддержка исследования осуществлялась в США национальные институты здравоохранения/Национальный институт Генеральной медицинских наук (NIH/NIGMS) Грант #GM085290 и Департамент обороны США (DOD) Грант #W81XWH-16-1-0466 присуждена Brewster Р.М. E. Vital была поддержана грантом UMBC Говард Хьюз медицинский институт через довузовского и Бакалавриат Наука образовательная программа, предоставить #52008090. С.п. Браун получил поддержку от США Департамента образования GAANN стипендий, стипендиатом Мейерхофф финансируется гранта NIH/NIGMS, #GM055036 и ассистентура исследований, финансируемых в США DOD Грант #W81XWH-16-1-0466.
Name | Company | Catalog Number | Comments |
Agarose | Used to treat petridishes. Prepare 1% agarose by heating a solution of 1 gram agarose per 100 ml 1X embryo medium in a microwave until polymerized. | ||
Kpipes | Sigma | P7643 | |
NaCl | Sigma | S7653 | |
Tris-HCl | Sigma | T3253-500G | |
KCl | Sigma | P9333-500G | |
CaCl2·2H2O | Sigma | C5080 | |
NP-40 | American Bioanalyticals | AB01424 | |
EGTA | Sigma | E3889-25G | |
MgCl2 | Sigma | M2670-500G | |
Bovine serum albumin (BSA) | Fisher | BP1605 | |
Triton-x | American Bioanalyticals | AB02025 | |
Anti-Fade mounting medium | Invitrogen | P10144 | |
Mouse anti-β-tubulin | Developmental studies Hybridoma Bank | E7 | 1/200 |
Rabbit anti-γ-tubulin | Genetex | GTX113286 | 1/500 |
Rabbit anti-α-tubulin | Genetex | GTX108784 | 1/1000* |
Rabbit anti-detyrosinated-tubulin | Millipore | AB3201 | 1/200-1/1000* Titrate antibody with first use of new lot. |
Rabbit anti-tyrosinated-tubulin | Millipore | ABT171 | 1/500 |
Mouse anti-centrin | Millipore | 04-1624 | 1/1000 |
Goat 488 anti-rabbit | Thermofisher | A11008 | 1/500 |
Goat 594 anti-rabbit | Thermofisher | A11012 | 1/500 |
Goat 594 anti-mouse | Thermofisher | A11005 | 1/500 |
Goat 488 anti-mouse | Thermofisher | A11001 | 1/500 |
Vibratome | Vibratome | 1500 | |
Forceps | World Precision Instruments | 555227F | |
100 mm petri dish | Cell treat | 229693 | |
35 mm petri dish | Cell treat | 229638 | |
50 ml falcon tube | Fisher | 14-432-22 | |
Woven nylon mesh 70 um | Amazon.com | B0043D1SZG | |
Micropipette | Gilson | F123602 | |
Glass pipette | Fisher | NC-999363-9 | |
Aquarium sealant | Amazon.com, by MarineLand | Silicone Sealer 1 oz (Tube) | |
Ring stand | Fisher | 14-675BO | |
Microbore PTFE Tubing, 0.022"ID | Cole-Parmer | WU-06417-21 | |
Modeling clay | Amazon.com | Sargent Art 22-4000 | Any wax or oil based non-toxic modeling clay will suffice |
Clamp | Fisher | 02-215-466 | |
60ml syringe | Fisher | 14-820-11 | |
Embryo medium (E3) | 34.8 g NaCl 1.6 g KCl 5.8 g CaCl2·2H2O 9.78 g MgCl2·6H2O To prepare a 60X stock, dissolve the ingredients in H2O, to a final volume of 2 L. Adjust the pH to 7.2 with NaOH. Autoclave. To prepare 1X medium, dilute 16.5 mL of the 60X stock to 1 L. | ||
Blocking Solution | 50 ml TBS-NP-40 2.5 ml normal goat serum 1 g BSA 625 µl Triton-X | ||
TBS-NP-40 (pH 7.6) | 155 mM NaCl 10 mM Tris HCl 0.1% NP-40 | ||
2x MAB (pH6.4) | 160 mM KPIPES 10 mM EGTA 2 mM MgCl2 | ||
Commercial 3-D Image processing Software | PerkinElmer | Volocity (V 6.2) | |
Dry block heater | VWR | 12621-108 | Used as a hot plate to melt agarose in Protocol 1. |
Dissecting Microscope | Leica | MZ12 | |
Confocal Microscope | Leica | SP5 | |
Flat embedding mold | emsdiasum.com | BEEM 70904-01 | |
Public domain image processing software | NIH | ImageJ (V 1.5) | |
* Success varies by lot number |
Запросить разрешение на использование текста или рисунков этого JoVE статьи
Запросить разрешениеThis article has been published
Video Coming Soon
Авторские права © 2025 MyJoVE Corporation. Все права защищены