Для просмотра этого контента требуется подписка на Jove Войдите в систему или начните бесплатную пробную версию.
Method Article
Наблюдение за распределением воды в ксилеме дает важную информацию о динамике потока воды в древесных растениях. В этом исследовании мы демонстрируем практический подход к наблюдению за распределением воды ксилем на месте с помощью криостата и крио-SEM, который устраняет артефактные изменения в состоянии воды во время подготовки образца.
Сканирующий электронный микроскоп, установленный крио-единица (крио-SEM), позволяет наблюдать за образцами при минусовых температурах и используется для изучения распределения воды в тканях растений в сочетании с методами замораживания фиксации с использованием жидкого азота (LN 2). Для древесных видов, однако, препараты для наблюдения ксилем поперечной огранки поверхности связаны с некоторыми трудностями из-за ориентации древесных волокон. Кроме того, более высокое напряжение в колонке воды в ксилемских каналах иногда может привести к артефактным изменениям в распределении воды, особенно во время фиксации и сбора проб. В этом исследовании мы демонстрируем эффективную процедуру наблюдения за распределением воды в ксилеме древесных растений на месте с помощью криостата и крио-SEM. Во-первых, во время сбора образцов, измерения потенциала воды ксилем аможет должен определить, присутствует ли высокое напряжение в ксилемских каналах. При низком потенциале ксилема воды (злот; около 0,5 МПа), процедура релаксации напряжения необходима для содействия лучшему сохранению состояния воды в ксилемских каналах во время фиксации замораживания образцов. Далее, водонепроницаемый воротник крепится вокруг ствола дерева и заполнен ы LN2 для замораживания фиксации состояния воды ксилем. После сбора урожая следует позаботиться о том, чтобы образец сохранялся замороженным при завершении процедур подготовки образца к наблюдению. Криостат используется, чтобы четко разоблачить поперечную поверхность ксилема. При крио-SEM-наблюдениях требуется корректировка времени для замораживания травления для удаления ледяной пыли и акцентирования края стенок клеток на смотровой поверхности. Наши результаты демонстрируют применимость крио-SEM методов для наблюдения распределения воды в xylem на клеточном и субклеточном уровнях. Сочетание крио-SEM с неразрушающими методами наблюдения на месте позволит значительно улучшить изучение динамики потока воды древесных растений.
Наличие водных ресурсов (т.е. осадки, содержание воды в почве) строго определяет смертность и географическое распределение видов растений, поскольку им необходимо поглощать воду из почвы и транспортировать ее в листья для фотосинтетического производства. Растения должны поддерживать свою систему водного транспорта под колеблющимися запасами воды. В частности, древесные растения создают высокую напряженность в своих каналах вдоль транспирационных потоков, поскольку в некоторых случаях им необходимо удерживать свою корону на высоте более 100 м над землей. Для поддержания столбов воды при таком высоком отрицательном давлении ксилемные каналы состоят из континуума трубчатых клеток с жесткими и гидрофобно-лигнированными клеточными стенками1. Уязвимость ксилем дисфункции ксилем каналов в каждом виде является хорошим детерминантом выживания видов при колебаниях водоснабжения2. Кроме того, изучение водного состояния ксилемных каналов имеет важное значение для оценки состояния здоровья отдельных деревьев, подвергающихся абиотическим или биотическим стрессам. Измерение потока сока или водного потенциала может дать оценку состояния воды древесного растения в связи с интегрированной гидравлической функцией ксилемовых каналов. Кроме того, визуализация распределения воды в клетках ксилема может прояснить состояние отдельных компонентов ксилемской гидравлической системы.
Несколько методов для визуализации состояния воды ксилем каналов существуют3. Классические и полезные методы наблюдения водных путей в древесной ткани включают окрашивание водного столба путем погружения концы разрезающих ветвей в краситель или путем введения красителя в стоячие стебли деревьев4. Мягкая рентгеновская фотография также позволяет визуализировать распределение воды нарезанных деревянных дисков из-за дифференциальной интенсивности поглощения рентгеновского излучения влаги в xylem5,6. Эти методы, однако, только обеспечивают следы движения воды или демонстрируют макроскопические распределения воды. В последнее время, неразрушающие методы наблюдения, такие как микрофокус рентгеновская компьютерная томография (ККТ)7,8,9,10и магнитно-резонансная томография (МРТ)11, 12, были значительно улучшены, чтобы позволить наблюдения воды в ксилем каналов в нетронутых саженцев. Эти неразрушающие методы имеют большие преимущества в том, что мы можем наблюдать состояние воды xylem без искусственных эффектов резки, и мы можем отслеживать динамику потока воды путем последовательной визуализации или введения контрастного агента10. Тем не менее, мы должны использовать индивидуальные МРТ для визуализации растений или специализированное средство для синхротронной основе ККТ для того, чтобы получить изображения, которые могут определить содержание воды клеточного уровня. Кроме того, хотя синхротронная система ЗКТ позволила получить тонкие изображения с высоким пространственным разрешением, что сопоставимо с световой микроскопией7,8,9, живые клетки могут быть повреждены излучение высокой энергии рентген13,14. Использование сканирующего электронного микроскопа, в котором установлены крио-единицы (крио-SEM), является очень полезным методом для точного определения местонахождения воды в ксилеме на клеточном уровне, хотя для этого требуется разрушительное сбор образца для наблюдения. Для фиксации воды в ксилем-каналах часть стеблей (т.е. ветки, ветви или стебли) замораживаются наместе жидким азотом (LN 2). Наблюдения за поверхностью обрезанных, замороженных образцов крио-SEM обеспечивают высокоувеличенные изображения структуры ксилема, из которой мы можем определить воду в ксилемских каналах как лед. Существенным ограничением этого метода является то, что последовательное наблюдение за подвижностью воды в пределах одного образца невозможно. Тем не менее, применение ККТ или МРТ для последовательного наблюдения за деревьями, которые живут в поле является чрезвычайно сложной задачей, поскольку эти инструменты не являются портативными. В отличие от этого, крио-SEM имеет потенциал для использования этой техники на больших деревьях в полевых экспериментах, чтобы четко визуализировать содержание воды не только на клеточном уровне, но и на более тонком уровне структуры, например, вода в межсосудистых ямах15, вода в межклеточные пространства16, или пузырьки в колонке воды17.
Многие исследования наблюдения ксилем воды крио-SEM были зарегистрированы 5,12,18,19,20,21,23. Utsumi et al. (1996) первоначально установили протокол для наблюдения xylem in situ путем замораживания-фиксации живого ствола через заполнение LN2 в контейнер, установленный на стебель21. Температура образца сохранялась ниже -20 градусов по Цельсию во время сбора образцов и во время подготовки крио-SEM, чтобы избежать таяния льда в ксилемских каналах. Этот метод был использован для наблюдения за водой в ксилеме для уточнения распределения воды при изменении водного режима11,12,24,25,26, 27,28, сезонные колебания распределения воды21,29,30, эффект заморозки оттепели циклов17,31, 32, распределение воды во влажной древесине5, изменения в распределении воды во время перехода от заболоня к heartwood20, сезонный курс времени камбиальной активности и дифференциации сосудов33, и кавитации индуцированных определенных биотических стрессов23,34. Гидравлическая проводимость и уязвимость каналов к кавитации также были проверены с помощью крио-SEM35,36. Cryo-SEM, оснащенный энергетической диспергивной рентгено-рентгенометрической спектрометрией (EDX или EDS), был использован для изучения распределения элементов на поверхности образца, содержащего воду37.
Замораживание-фиксация живого ствола, который содержит каналы под высоким гидравлическим напряжением, иногда вызывает искусственные кавитации, которые наблюдаются крио-SEM как сломанные кристаллы льда в просвете проводников38,39. В частности, широколинейшие виды с более длинными и широкими каналами уязвимы для артефактов, вызванных напряженностью, таких как кавитация, вызванная вырубкой образцов, даже если она проводится под водой3,40. Артефакты кавитации становятся заметными после отбора проб транспирирующегося дерева (т.е. выборки в дневное время) или в условиях сильной засухи, и они могут ввести в заблуждение к завышению кавитации возникновения3,38, 39. Таким образом, напряжение, работая в каналах должен быть освобожден, чтобыизбежать артефактной кавитации 3,12,39.
Техника замораживания-перелома с помощью ножа, установленного в камере образца, часто используется для того, чтобы обнажить поверхность образца для наблюдения крио-SEM. Однако, замерзать-раздробленные плоскости древесных тканей завода, специально поперечные разделы вторичного xylem, слишком грубы для того чтобы ясно наблюдать анатомические характеристики и воду в ткани6. Применение криостата для обрезки образца позволяет быстро и качественно подготовить образец поверхностей20,23. Общая цель этого метода является предоставление доказательств с электронной микроскопии разрешение распределения воды в различных видах клеток ксилем на месте без возникновения выборок артефактов. Мы вводим нашу обновленную процедуру, которая постоянно совершенствуется с тех пор, как мы впервые ее приняли, в отношении отбора проб, обрезки и очистки поверхности образца для получения высококачественных электронных микрографов крио-фиксированных образцов ксилема.
ПРИМЕЧАНИЕ: Схематическая диаграмма этого протокола показана на рисунке 1.
1. Отбор проб: Напряжение Релаксация в пределах колонки воды Xylem Conduits
ПРИМЕЧАНИЕ: Следующее лечение релаксации напряжения рекомендуется перед приложением LN2, чтобы избежать как замораживания, так и напряжённых артефактов в распределении воды ксилема.
2. Заморозить фиксации с LN2
3. Подготовка образцов
ПРИМЕЧАНИЕ: Для наблюдения образец должен быть обрезан, а его поверхность для наблюдения должна планироваться при минусовой температуре, чтобы сохранить распределение воды в ксилеуме на месте. Биологический микротом с криосатсистемной системой (криостат) идеально подходит для обрезки и обнажения поверхности образца в этом типе наблюдения крио-SEM.
4. Передача в Крио-SEM Specimen камеры
ПРИМЕЧАНИЕ: Подготовленный на поверхности образец должен быть защищен от повышения температуры или накопления мороза во время переноса из криостатной камеры на этап наблюдения в крио-SEM образец камеры.
5. Установка в SEM
ПРИМЕЧАНИЕ: Типичные настройки для наблюдения описаны ниже. Некоторые изменения необходимы в зависимости от состояния вакуума или электронного луча.
6. Замораживание травления
ПРИМЕЧАНИЕ: Замораживание травления является процедура для акцентирования края клеточных стен образца путем небольшой сублимации кристалла льда. Замораживание травления также включает в себя удаление поверхностной ледяной пыли.
7. Металлическое покрытие (необязательно)
ПРИМЕЧАНИЕ: Недавние улучшения в SEM прибор и обработка изображений могут обеспечить высокое качество изображения электрических изоляционных образцов без металлического покрытия. Однако непроводящие образцы, такие, как биологические материалы, иногда подвергаются заряду; более высокая яркость в определенных положениях образца за счет накопления электронов ("зарядка"). Подвергая образец электронным лучам в течение более длительного периода времени или для высокого увеличения, увеличивает зарядэффекты. Покрытие поверхности образца электропроводящими металлическими материалами предотвращает возникновение зарядки. Используйте систему вакуумного покрытия, которая устанавливается в блоке крио-SEM, чтобы предотвратить повышение температуры образца во время покрытия.
Репрезентативные изображения поперечных поверхностей хвойных и широколицированных деревьев ксилем, наблюдаемые крио-SEM, показаны на рисунке 2. При низком увеличении черная область на снимках указывает на полости, из которых вода полностью или частичн...
Методы наблюдения крио-SEM, представленные в настоящем документе, практичны для четкой визуализации распределения воды в клеточном масштабе. С помощью этого метода изучение изменений в распределении воды в ксилеме потенциально может помочь прояснить механизм толерантности видов дере?...
Авторам нечего раскрывать.
Эта работа была поддержана JSPS KAKENHI (Нет. 20120009, 20120010, 19780129, 25292110, 23780190, 23248022, 15H02450, 16H04936, 16H04948, 17H03825, 18H0285)
Name | Company | Catalog Number | Comments |
coating material | JOEL Ltd., Japan | Gold wire, 0.50 × 1000 mm, 99.99 %, Parts No. 125000499 | |
cryo scanning electron microscope | JOEL Ltd., Japan | JSM-6510 installed with MP-Z09085T / MP-51020ALS | |
cryostat | Thermo Scientific | CryoStar NX70 | |
microtome blade | Thermo Scientific | HP35 ULTRA Disposable Microtome Blades, 3153735 | |
tissue freezing embedding medium | Thermo Scientific | Shandon Cryomatrix embedding resin, 6769006 |
Запросить разрешение на использование текста или рисунков этого JoVE статьи
Запросить разрешениеThis article has been published
Video Coming Soon
Авторские права © 2025 MyJoVE Corporation. Все права защищены