Для просмотра этого контента требуется подписка на Jove Войдите в систему или начните бесплатную пробную версию.
Method Article
Этот протокол описывает высокопроизводительную плазмидную трансфекцию клеток млекопитающих в 384-хорошую пластину с использованием акустической технологии выброса капель. Трудоемкий, подверженный ошибкам раздавливание ДНК и мультиплексирование, а также дозирование реагентов трансфекционного реагента, являются программным обеспечением и выполняются нанодайзером. Клетки затем посеяны в этих предварительно заполненных скважин.
Трансфекция клеток, незаменимая для многих биологических исследований, требует контроля многих параметров для точного и успешного достижения. Чаще всего выполняется при низкой пропускной их, это к тому же трудоемкие и подверженные ошибкам, тем более при мультиплексации нескольких плазмидов. Мы разработали простой, быстрый и точный метод для выполнения трансфекции клеток в 384-хорошо макет пластины с использованием акустических капель катапульты (ADE) технологии. Устройство nanodispenser используемое в этом изучении основано на этой технологии и позволяет точно поставку nanovolume на высокой скорости от плиты скважины источника к назначению одному. Он может обойтись и мультиплекс ДНК и трансфекционного реагента в соответствии с заранее разработанной таблицы. Здесь мы представляем оптимальный протокол для выполнения ADE основе высокой пропускной способностью плазмидтранса, что позволяет достичь эффективности до 90% и почти 100% котрансфекции в котрансфекционных экспериментов. Мы расширяем первоначальную работу, предлагая удобный для пользователя макрос на основе электронных таблиц, способный управлять до четырех плазмидов/колодцев из библиотеки, содержащей до 1536 различных плазмидов, и приложения для планшетного нахлыстое направляющее приложение. Макрос разрабатывает необходимый шаблон (ы) исходной пластины (ы) и генерирует готовые к использованию файлы для нанодайзера и планшетного приложения. Четырехэтапный протокол трансфекции включает в себя i) разбавитель обойтись с классическим жидким обработчиком, ii) плазмидное распределение и мультиплексирование, iii) трансфекционный реагент распределяется нанодсером, и iv) клеточное покрытие на предварительно заполненных скважинах. Описанный программно-основанный контроль мультиплексирования и трансфекции Плазмидных плазмидных aDE позволяет даже неспециалистам в полевых условиях быстро и безопасно выполнять надежную трансфекцию клеток. Этот метод позволяет быстро определить оптимальные настройки для данного типа ячейки и может быть перенесен на более высокие и ручные подходы. Протокол облегчает применение, такие как человеческий белок ORFeome (набор открытых кадров чтения в геноме) или CRISPR-Cas9 на основе генной функции проверки, в непулированных стратегий скрининга.
Представленный здесь метод подробно описывает, как выполнять мультиплексирование и трансфекцию ДНК в клетках млекопитающих при высокой пропускной состоянии с помощью жидкого нанодайзера на основе акустической системы в 384-хорошей пластине, даже для неспециалистов в этой области. Этот недавно опубликованный метод1 позволяет выполнять столько, сколько 384 независимых плазмидных мультиплексирования ДНК и трансфекции условиях в одном эксперименте, менее чем за 1 ч. Одиночные или котрансфекционные эксперименты были успешными, достигнув почти 100% котрансфекция в популяции трансинфицированных клеток. Этот протокол упрощает трансфекцию, поскольку большинство утомительных, трудоемких и подверженных ошибкам шагов теперь ориентированы на программное обеспечение (см. рисунок 1 для общего обзора). Были предприняты дальнейшие усилия по разработке специализированных инструментов для повышения простоты использования при одновременном предотвращении человеческих ошибок в ходе общего процесса и содействия успешному трансфекции даже для неспециалистов в этой области. Описанный протокол включает в себя "удобную" макротаблицу, которую мы разработали для управления 384 независимыми трансфекционными условиями с мультиплексированием возможностей до четырех плазмидов в каждой скважине. Макрос автоматически генерирует шаблоны исходной пластины (ы) для загрузки ожидаемого объема плазмидной плазмы ДНК от стартовых фондовых решений и файлов, необходимых для привода программного обеспечения нанодайзера на экспериментальной конструкции, которая была введена. Поскольку ручная раздача ДНК в 384-хорошо источник пластины утомительно и подвержены ошибкам, мы также разработали специальное приложение на основе таблетки для руководства пользователя при распределении решения ДНК в соответствии с шаблоном.
Рисунок 1: Экспериментальный рабочий процесс. Схематическое представление оптимального автоматизированного протокола обратного трансфекции высокой пропускной связи (от экспериментального проектирования до пользовательского биологического асссе). Ручные шаги указаны символом руки, а приблизительное время для каждого шага написано в красной коробке. Пожалуйста, нажмите здесь, чтобы просмотреть большую версию этой цифры.
Многие клеточные эксперименты начинаются с плазмидной трансфекции ДНК, и даже если многие выделенные реагенты были и все еще разрабатываются для повышения эффективности трансфекции и / или облегчить процедуру, многое еще предстоит сделать2,3 , 4. Трансфекция плазмидных клеток ДНК включает в себя несколько шагов для достижения высокой эффективности, таких как начальное комплексное поглощение, эндосомальный побег и цитоплазмический перенос к ядру5,6. В дополнение к выпасам кальция или физическим методам, таким как электропорация или микроинъекция с использованием специальных устройств7, современные химические методы были сосредоточены на повышении доставки клеток ДНК при снижении цитоксичности клеток8, 9. Использование липидов или катионных полимеров, образующих липосомы-подобные комплексы, а в последнее время нелипсоомальные полимерные химические системы сделали трансфекцию проще и эффективнее10. Несмотря на эти изменения, трансфекция клеток по-прежнему требует конкретных навыков, которые должны быть точно выполнены, поскольку большинство из этих физических или химических протоколов трансфекции требуют, чтобы ученые вручную подготовить каждое состояние реакции трансфекции ДНК, таким образом ухудшает пропускную выливку. Чтобы обойти эту проблему, обратные протоколы трансфекции были разработаны с использованием химических реагентов трансфекции11,12,13, что позволяет пользователю проверить или объединить несколько плазмидов в более быстрый способ. В этих протоколах перед посевом клеток на комплексах образуются нуклеиновые кислотные комплексы с трансфекционными реагентами. Однако эти обратные протоколы по-прежнему ограничены ручным управлением решениями ДНК и сочетанием каждого из независимых условий. Хотя это возможно, чтобы выполнить их в 96-ну хорошо пластины формате, подготовка ДНК и дозы будет утомительным, и там, вероятно, будут ошибки. Когда требуется различное количество нескольких плазмидов ДНК и мультиплексируется друг с другом, трансфекция клеток становится еще более трудной и более трудоемкой, и человеческие ошибки становятся совершенно неизбежными. Масштабирование до 384-колодцевого формата пластин в обратном подходе трансфекции, несмотря на несколько мультиплексированных условий трансфекции ДНК, становится невозможной задачей из-за следующих причин. i) Объемы ДНК, трансфективный реагент или объемы реакционной смеси для управления ниже, чем 1 КЛ для каждой скважины. ii) Мультиплексирование плазмидов для 384 независимых условий становится чрезвычайно сложным. Поставка в каждой из 384 скважин также iii) очень трудоемкие и iv) ошибка подвержена. Действительно, выдать правильное решение в ожидаемых скважинах трудно управлять, потому что низкие объемы уже обойтись не позволяют визуального мониторинга между пустыми и уже заполненными скважинами. v) Наконец, существует высокий риск высыхания смеси путем испарения до добавления клеток в связи со временем, необходимым для выполнения необходимых мер по дозированию. Таким образом, ограничивающим фактором для создания высокой пропускной днк плазмидных трансфекционных анализов, как представляется, миниатюризация анализа, который подразумевает малообъемный мультиплексирование и управление, которые не могут быть обработаны вручную больше, но также вряд ли достижимы в надежным способом классическими перистатическими жидкими обработчиками.
В качестве доказательства сложности автоматизировать такие assays и получить высокую пропускную стоимость, только несколько попыток автоматизировать трансфекции были опубликованы до сих пор: 96-ну хорошо пластины формат с использованием коммерческого устройства обработки жидкости и фосфата кальция осадков14 и, совсем недавно, липоплексрей, и микрофлюидный чип, позволяющий 280 независимых трансфекций15, но требующих специальных навыков в этой области. Другой метод, акоутофорез, позволяющий жидкой левитации и ведущих к жидкости манипуляции и смешивания, был использован для выполнения трансфекции ДНК в 24-96-ну хорошо пластины форматов16. Хотя этот подход является осуществимым, он страдает от крайне низкой пропускной всей перевалки, поскольку смешивание клеток с трансфекционной смесью ДНК требует инкубации 60 с для каждой точки перед посевом. Это означает продолжительность не менее 96 мин для полной 96-колодца пластины. Кроме того, этот протокол далек от того, чтобы поддаваться общей аудитории биологов, как эта работа была сделана с в доме разработан и изготовлены устройства, которые в настоящее время не доступны на рынке. Напротив, в последние несколько лет с помощью нанообъемных диспенсеров появилась простая в использовании технология акустического дозирования на основе программного обеспечения. Используя сфокусированную акустическую энергию, эти устройства позволяют жестко контролируемый выброс небольших объемов жидкости от 2,5 нл до 500 нл от исходной пластины до пункта назначения17. Эта технология, называемая акустической выкатывания капель (ADE), имеет множество преимуществ: она полностью автоматизирована, бесконтактная, без кончиков, точная, точная и высоко воспроизводимая, и имеет высокую пропускную связь18. Первый посвященный доставке диметилсульксида (DMSO) решения, настройки были расширены, чтобы обойтись aqueous буферов19. Таким образом, акустические нанодятелы, кажется, подходят для протоколов трансфекции обратных клеток и могут обойти большинство вышеупомянутых ручных ограничений. Поскольку с помощью этой технологии не было описано никаких попыток трансфекции плазмидных трансфекций, мы недавно оценили пригодность акустической системы дозирования для выполнения обратного трансфекции клеток.
Воспользовавшись пропускной стоимостью нанодчебирования и простотой использования, мы оптимизировали обратный протокол трансфекции для клеток HeLa путем перекрестного тестирования нескольких параметров, которые могут влиять на трансфекцию ДНК на 384-ну, одной пластине, а именно, общее количество ДНК и источник концентрации ДНК, разбавитель, трансфекционный реагент, и количество спреда клеток. Разработанный протокол обходит вышеописанные ручные ограничения трансфекции клеток и предоставляет ряд преимуществ по сравнению с другими автоматизированными попытками трансфекции. Во-первых, он миниатюризирован, что позволяет экономически эффективным трансфекционным реагентом, экономя препараты плазмида ДНК и трансфекционный реагент. Во-вторых, он гораздо более высокопроизводительен и воспроизводим, чем ручной протокол (даже для начинающих), так как трансфекция всей 384-й пластины может быть достигнута менее чем за 1 ч. Наконец, это программное обеспечение, что позволяет контролировать дозированных количество ДНК и мультиплексирования нескольких плазмидов. Действительно, благодаря программному обеспечению nanodispenser(Таблица материалов), пользователь может разработать план исследования для управления объемами, которые будут освобождены от определенного источника хорошо пластины назначения один.
Представленный здесь протокол предназначен в основном для тех, кто имеет доступ к нанодционизму и хотел бы создать трансфекционные эксперименты с высокой пропускной их пропускной вот и доступной, но также и для тех, кто хочет быстро оптимизировать свои параметры трансфекции для данного типа клеток применение этого протокола для перекрестного тестирования нескольких параметров при высокой пропускной состоянии. Действительно, мы показали, что оптимизированные параметры, идентифицированные с этим наномасштабным протоколом, могут быть перенесены в более масштабные и ручные трансфекционные эксперименты. Наконец, поскольку трансфекционный реагент, используемый в настоящем протоколе, позволяет трансфекцию ДНК или siRNA в соответствии с производителем, протокол также представляет интерес для тех, кто стремится к выполнению комплексных подходов к переэкспрессии генов или нокдауну. Назначения пластины предварительно заполнены ДНК могут быть сохранены до 7 дней до использования в трансфекционном анализе без потери эффективности, которая является еще одним преимуществом следующего протокола для такого рода применения.
1. Предварительная подготовка
2. Экспериментальный дизайн и генерация пиклистов для управления диспенсами на основе ADE
ПРИМЕЧАНИЕ: Для управления объемами ДНК и смешивания до четырех плазмидов в формате 384 колодца был разработан специальный макрос электронной таблицы. Основываясь на введенном экспериментальном дизайне, этот макрос генерирует необходимые файлы для управления протоколом трансфекции ДНК на основе ADE с помощью нанодайзера. Для того, чтобы создать эти файлы, несколько полей должны быть заполнены в листе шаблонов, как показано на рисунке 2.
Рисунок 2 : Поколение списков для управления диспенсацией ADE с помощью макроса электронной таблицы. Несколько параметров должны быть заполнены, а именно :1 ) трансфекционный реагент (TR) и минимальные/максимальные объемы, которые будут использоваться в исходной пластине, (2) первоначальные концентрации плазмида, которые должны быть распределены в исходной пластине, и(3 ) конструкция цельной пластины, включая ожидаемые количества плазмидных и мультиплексирования в каждом из 384 скважин. (4) Активация Picklists позволяет проверить различные поля и, после правильного заполнения, пиклисты для диспенсации ДНК и TR и необходимый шаблон исходной пластины автоматически генерируются. Пожалуйста, нажмите здесь, чтобы просмотреть большую версию этой цифры.
3. Подготовка пластины источника ДНА используя применение направляющего выступа 384-ну наилучшим образом
Рисунок 3 : Использование приложения направляющих направляющих 384 колодца. (1) Калибровка 384-колодца сетки до размера пластины; (2) ) Гора универсального 3D-печатного адаптера пластины к планшету с помощью двусторонней ленты; (3) Размещение пластины на адаптере; (4) Перемещение сетки, чтобы центр его на установленную пластину. (5) Блокировка шага калибровки. (6) Открытие 384 скважин pipetting guide.csv файл. (7) Учитывая список файлов, приложение будет указывать ожидаемое название исходной пластины, реагент (ДНК или трансфекционный реагент), концентрацию и объем для раздачи в целевые скважины, которые будут освещены один за 1. (8) Левая и правая кнопки стрелки позволяют пользователю следовать пипетки руководство легко распределять реагенты в соответствии с электронной таблицей макро шаблон амплитуды (ы). Пожалуйста, нажмите здесь, чтобы просмотреть большую версию этой цифры.
4. Перистальтический жидкий обработчик на основе 1 л разбавитель диспенсации в пункт назначения пластины
ПРИМЕЧАНИЕ: Выполните шаги 4.1-4.5 в шкафе биологической безопасности.
5. Проведение обследования для управления объемами, выданными вручную
ПРИМЕЧАНИЕ: Для получения подробной информации, см. Рисунок 4.
Рисунок 4 : Определение параметров программного обеспечения для обследования. (1) Запуск программы наноддазатора. (2) Откройте вкладку Диагностика. (3) Вставьте исходную пластину, тикая для исходной пластины, а затем, В. (4) Определите тип исходной тарелки в меню, когда это вызвано. (5) В разное поле выберите Обзор в выпадающем меню. (6) Запуск программы обследования, нажав на запуск. (7) Выберите заполненные скважины для измерения. (8) Начните анализ, нажав на Go. (9) После проведения обследования измеренные объемы записываются в соответствующие выбранные скважины. Пожалуйста, нажмите здесь, чтобы просмотреть большую версию этой цифры.
6. Диспенсация ДНК на основе АДЕ в пункт назначения
Рисунок 5 : Производительность диспенсации на основе выбора. (1) Запуск программного обеспечения нанодчении. Во вкладке Протокола выберите (2) формат пластины образца, (3)тип пластины назначения и (4)отсетики "оптимизировать пропускную стоимость передачи". (5) Выберите вкладку Список выбора. (6) Нажмите на импорт и выберите правильный файл q.csv (DNA-PickList или T.R.-Picklist). (7) После выбора, нажмите на импорт. (8) Нажмите на воспроизведение и сохранить протокол. (9) Выполните моделирование диспенсации, нажав на Имитацию, или ( 10 ) Начать запрограммированное диспенсацию, нажав на Run. Пожалуйста, нажмите здесь, чтобы просмотреть большую версию этой цифры.
7. Диспенсация трансфективных реагентов, управляемых ADE
8. Перистальтический обработчик жидкости на основе клеточного диспенсации
9. Пользовательский биологический контроль (мониторинг эффективности трансфекции клеток)
ПРИМЕЧАНИЕ: Следуя экспериментальным настройкам и намерениям эксперимента, используйте необходимые методы для люминесценции, флуоресценции, скрининга высокого содержания и обратной транскрипции количественной полимеразной цепной реакции (RT-qPCR). В этом разделе протокола эффективность трансфекции клеток оценивается с помощью автоматизированной флуоресценционной микроскопии и анализа изображений.
f Для того, чтобы определить, может ли технология ADE быть использована для автоматизированного протокола обратного трансфекции, мы отслеживали эффективность трансфекции клеток с помощью флуоресцентной микроскопии, используя красный флуоресцентный tdTomato, выражающий п...
Создание и оптимизация точного метода трансфекции высокой пропускной связи для данной клеточной линии требует от ученых следовать некоторым ключевым параметрам, описанным в этом разделе. Мы настоятельно рекомендуем начать с рекомендуемых значений во всем протоколе, так как эти парам...
Авторам нечего раскрывать.
Авторы раскрыли получение следующей финансовой поддержки для исследования, авторства и/или публикации этой статьи: Inserm, Лилльский университет, Институт Лилля Пастера, Conseil Regional du Nord, и PRIM-HCV1 и 2 (Пале де Рехерш Междисциплинарное сюр-ле-Медикамент), Национальная эгенство Речерче (ANR-10-E-PX-04-01), Федер (12001407 (D-AL) Equipex Imaginex BioMed) и Европейское сообщество (ERC-STG INTRACETB. Авторы хотели бы поблагодарить д-ра С. Моуре, д-ра Б. Виллеман, д-ра Р. Ферру-Клемента и д-ра Х. Гроульта за их критический обзор и исправление рукописи.
Name | Company | Catalog Number | Comments |
384LDV Microplate | Labcyte | LP-0200 | |
384-well Microplate μClear Black | Greiner | 781906 | |
Ampicilin | Sigma | A9393-5G | Selection antibiotic for bacteria transformed with ampicilin expressing vector |
Android Tablet | Samsung | Galaxy Note 8 | used to guide the user while the source plate manual dispense |
Aniospray Surf 29 | Anios | 2421073 | disinfectant to clean the MicroFlo head |
Columbus software | Perkin Elmer | image analysis software | |
Dulbecco's Modified Eagle Medium (DMEM), high glucose, GlutaMAX Supplement, pyruvate | Thermo Fisher Scientific | 10566032 | cell culture medium |
Echo Cherry Pick 1.5.3 software | Labcyte | Software enabling ADE-based dispenses by the Echo550 device from a *.csv file; nanodispenser software | |
Echo550 | Labcyte | ADE-based dispenser | |
Fetal Bovine Serum | Thermo Fisher Scientific | 16000044 | to add in cell culture medium |
Formalin solution, neutral buffered, 10% | Sigma-Aldrich | HT501128-4L | to fix cell |
HeLa cells | ATCC | HeLa (ATCC® CCL-2™) | |
Hoechst 33342, Trihydrochloride, Trihydrate | Thermo Fisher Scientific | H3570 | 10 mg/mL Solution in Water |
INCell Analyzer 6000 | GE Healthcare | 29043323 | automated laser-based confocal imaging platform |
LB medium | Thermoischer Scientific LB Broth Base (Lennox L Broth Base)®, powder | 12780052 | culture medium for bacteria growth |
Lysis Buffer (A2) | Macherey-Nagel | 740912.1 | Buffer from the NucleoSpin Plasmid kit used to prepare plasmid from bacterial culture |
MicroFlo 10µL cassette | Biotek Instruments Inc | 7170013 | to use with the Microflo Dispenser |
MicroFlo 1μL cassette | Biotek Instruments Inc | 7170012 | to use with the Microflo Dispenser |
MicroFlo Dispenser | Biotek Instruments Inc | 7171000 | peristaltic pump-based liquid handler device |
Microvolume spectrophotometer | Denovix | DS-11 Spectrophotometer | Measure the DNA concentration of samples |
mVenus plasmid | mVenus cDNA was cloned by enzymatic restriction digestion and ligation in Age1/BsrG1 sites of the tdTomato-N1 plasmid | Vector type: Mammalian Expression, Fusion Protein: mVenus | |
Neutralization Buffer (A3) | Macherey-Nagel | 740913.1 | Buffer from the NucleoSpin Plasmid kit used to prepare plasmid from bacterial culture |
NucleoSpin Plasmid kit | Macherey-Nagel | 740588.50 | used to prepare plasmid from bacterial culture |
Optimal-Modified Eagle Medium (Opti-MEM) Medium | Thermo Fisher Scientific | 31985070 | |
optional Wash bufferWash Buffer (A4) | Macherey-Nagel | 740914.1 | Buffer from the NucleoSpin Plasmid kit used to prepare plasmid from bacterial culture |
orbital shaker | incubated large capacity shaker | 444-7084 | Used to grow bacteria under gentle agitation and 37°C |
Penicillin-Streptomycin | Thermo Fisher Scientific | 15140122 | 10,000 U/mL |
Phosphate-Buffered Saline | Thermo Fisher Scientific | 10010001 | |
Plasmid mini-columns | Macherey-Nagel | 740499.250 | Silica membrane mini-column to prepare plasmid from bacterial culture |
Resuspension Buffer (A1) | Macherey-Nagel | 740911.1 | Buffer from the NucleoSpin Plasmid kit used to prepare plasmid from bacterial culture |
RNAse A | Macherey-Nagel | 740505 | Enzyme from the NucleoSpin Plasmid kit used to prepare plasmid from bacterial culture |
tdTomato-N1 plasmid | Addgene | Plasmid #54642 | Vector type: Mammalian Expression, Fusion Protein: tdTomato |
TransIT-X2 Dynamic Delivery System | Mirus Bio | MIR 6000 | |
Wash Buffer (AW) | Macherey-Nagel | 740916.1 | Buffer from the NucleoSpin Plasmid kit used to prepare plasmid from bacterial culture |
3D printer | Creality | CR10S | used to print the plate adapter |
Blender Software | https://www.blender.org/ Free software under GNU General Public License (GPL). | version 2.79b | used to design the plate adapter |
Запросить разрешение на использование текста или рисунков этого JoVE статьи
Запросить разрешениеThis article has been published
Video Coming Soon
Авторские права © 2025 MyJoVE Corporation. Все права защищены