Для просмотра этого контента требуется подписка на Jove Войдите в систему или начните бесплатную пробную версию.
Method Article
Мы представляем моторное центробежное микрофлюидное устройство, которое может культивировать клеточные сфероиды. С помощью этого устройства, сфероиды одного или нескольких типов клеток могут быть легко сконкультурированы в условиях высокой гравитации.
Трехмерная культура сфероидных клеток может получить более полезные результаты в клеточных экспериментах, поскольку она может лучше имитировать клеточную микросреду живого тела, чем двухмерную клеточную культуру. В этом исследовании мы изготовили электромоторную платформу Lab-on-a-CD (compact disc), называемую центробежной микрофлюидной системой культуры сфероидов (CMS), чтобы создать трехмерные (3D) клеточные сфероиды, реализующие высокую центробежную силу. Это устройство может варьировать скорость вращения для создания условий гравитации от 1 х г до 521 х г. Система CMS имеет 6 см в диаметре, имеет сто 400 мкм микроуэллов, и производится путем литья с полидиметилсилоксаном в поликарбонатной плесени, сделанной компьютерным аппаратом управления числом. Барьерная стена на входе канала системы CMS использует центробежную силу для равномерного равномерного распределения клеток внутри чипа. В конце канала есть область слайда, которая позволяет клеткам входить в микроколодцы. В качестве демонстрации, сфероиды были созданы монокультуры и кокультуры человеческих жиров полученных стволовых клеток и легких фибробластов человека в условиях высокой гравитации с помощью системы. Система CMS использовала простую схему работы для производства сфероидов кокультуры различных структур концентрических, Янус, и сэндвич. Система CMS будет полезна в клеточной биологии и исследованиях тканей, которые требуют сфероидов и органоидной культуры одного или нескольких типов клеток.
Легче моделировать биологические микросреды in vivo с трехмерной (3D) культурой сфероидных клеток, чем с двухмерной (2D) клеточной культурой (например, обычной культурой клеток петри) для получения более физиологически реалистичного экспериментального результаты1. В настоящее время доступны методы формирования сфероидов включают висячие капли техники2, жидкая накладка техника3, carboxymethyl целлюлозы техники4, магнитной силы на основе микрофлюидной техники5, и использование биореакторы6. Хотя каждый метод имеет свои преимущества, необходимо дальнейшее улучшение воспроизводимости, производительности и генерации сфероидов кокультуры. Например, в то время как микрофлюидная техника5 на основе магнитной силы является относительно недорогой, влияние сильных магнитных полей на живые клетки необходимо тщательно рассмотреть. Преимущества сфероидной культуры, особенно в изучении мезенхимальной дифференциации стволовых клеток и распространения, были зарегистрированы в нескольких исследованиях7,8,9.
Центробежная микрофлюидная система, также известная как lab-on-a-CD (компактный диск), полезна для легкого контроля жидкости внутри и использования вращения субстрата и, таким образом, была использована в биомедицинских приложениях, таких как иммуноанализы 10, колорометрические анализы для обнаружения биохимических маркеров11,усиление нуклеиновой кислоты (ПЦР), автоматизированные системы анализа крови12и все-в-одном центробежные микрофлюидные устройства13. Движущей силой, контролирующей жидкость, является центростремительная сила, создаваемый вращением. Кроме того, несколько функций смешивания, вальвинга и разделения образцов можно сделать просто в этой единственной платформе компакт-диска. Однако, по сравнению с вышеупомянутыми методами биохимического анализа, было меньше испытаний, применяющих CD-платформы к культурным клеткам, особенно сфероидам14.
В этом исследовании мы показываем производительность центробежной микрофлюидной сфероидной системы (CMS) путем монокультуры или кокультуры стволовых клеток человека, полученных из жиров (hASC) и фибробластов легких человека (MRC-5). В этой статье подробно описывается методология исследования нашей группы15. Таким образом, платформа сфероидной культуры-на-CD может быть легко воспроизведена. Представлена система генерации CMS, включающая чип культуры CMS, держатель чипа, двигатель постоянного тока, моторную установку и вращающуюся платформу. Моторная крепление напечатано 3D с акрилонитрилом бутадиена стирола (ABS). Держатель чипа и вращающаяся платформа cNC (компьютерный цифровой контроль) отражаются с ПК (поликарбонат). Скорость вращения двигателя контролируется от 200 до 4500 об/мин путем кодирования PID (пропорционально-интегрально-производной) алгоритма на основе импульсно-ширинной модуляции. Его габариты 100 мм х 100 мм х 150 мм и вес 860 г, что делает его легким в обращении. Используя систему CMS, сфероиды могут быть созданы в различных условиях гравитации от 1 х г до 521 х г,поэтому изучение содействия дифференциации клеток в условиях высокой гравитации может быть продлено с 2D-клеток16,17 до 3D Сфероида. Кокультура различных типов клеток также является ключевой технологией для эффективного имитирования среды in vivo18. Система CMS может легко генерировать монокультурные сфероиды, а также сфероиды кокультуры различных типов структур (например, концентрические, янус ы, и сэндвич). Система CMS может быть использована не только в простых сфероидных исследованиях, но и в 3D органоидных исследованиях, для рассмотрения структур органов человека.
1. Центробежная микрофлюидная сфероидная (CMS) культура изготовления чипов
2. Подготовка клеток
3. Монокультурное формирование сфероидов
4. Формирование сфероидов кокультуры
5. Окрашивание клеток
Чип культуры CMS диаметром 6 см(рисунок 2)был успешно изготовлен по вышеуказанному протоколу. Во-первых, чип был сделан отдельно от верхнего слоя и нижнего слоя, а затем связаны друг с другом плазменной связи. В результате сфероиды могут быть легко собраны путем отсоединен?...
CMS является закрытой системой, в которой все инъекционные клетки попадают в микроскважину без отходов, что делает его более эффективным и экономичным, чем обычные методы генерации сфероидов на основе микроскважин. В системе CMS, средства массовой информации заменяется каждые 12-24 ч через ...
Авторам нечего раскрывать.
Это исследование было поддержано Программой фундаментальных научных исследований (2016R1D1A1B03934418) и Программой развития био- и медицинских технологий (2018M3A9H1023141) NRF и финансируется корейским правительством, MSIT.
Name | Company | Catalog Number | Comments |
3D printer | Cubicon | 3DP-210F | |
Adipose-derived mesenchymal stem cells (hASC) | ATCC | PCS-500-011 | |
Antibiotic-Antimycotic | Gibco | 15240-062 | Contained 1% of completed medium and buffer |
CellTracker Green CMFDA | Thermo Fisher Scientific | C2925 | 10 mM |
CellTracker Red CMTPX | Thermo Fisher Scientific | C34552 | 10 mM |
Computer numerical control (CNC) rotary engraver | Roland DGA | EGX-350 | |
DC motor | Nurielectricity Inc. | MB-4385E | |
Dimethylsulfoxide (DMSO) | Sigma Aldrich | D2650 | |
Dulbecco's modified eaggle's medium (DMEM) | ATCC | 30-2002 | |
Dulbecco's phosphate buffered saline (D-PBS) | ATCC | 30-2200 | |
Fetal bovine serum | ATCC | 30-2020 | Contained 10% of completed medium |
human lung fibroblasts (MRC-5) | ATCC | CCL-171 | |
Inventor 2019 | Autodesk | 3D computer-aided design program | |
Petri dish Φ 150 mm | JetBiofill | CAD010150 | Surface Treated |
Plasma cleaner | Harrick Plasma | PDC-32G | |
Pluronic F-127 | Sigma Aldrich | 11/6/9003 | Dilute with phosphate buffered saline to 4% (w/v) solution |
Polycarbonate (PC) | Acrylmall | AC15PC | 200 x 200 x 15 mm |
Polydimethylsiloxane (PDMS) | Dowcorning | Sylgard 184 | |
Trypsin | Gibco | 12604021 |
Запросить разрешение на использование текста или рисунков этого JoVE статьи
Запросить разрешениеThis article has been published
Video Coming Soon
Авторские права © 2025 MyJoVE Corporation. Все права защищены