Для просмотра этого контента требуется подписка на Jove Войдите в систему или начните бесплатную пробную версию.
Method Article
Предусмотрен протокол для установки стандартного конфокального лазерного сканирующего микроскопа для измерений резонансной передачи энергии in vivo Förster с последующей оценкой данных.
Эксперименты с резонансным переносом энергии Фёрстера (FRET) на основе сенсибилизированного излучения легко выполняются, но зависят от микроскопической установки. Конфокальные лазерные сканирующие микроскопы стали рабочей лошадкой для биологов. Коммерческие системы обеспечивают высокую гибкость в регулировке мощности лазера и чувствительности детектора и часто объединяют различные детекторы для получения идеального изображения. Однако сравнение данных, основанных на интенсивности, из разных экспериментов и установок часто невозможно из-за этой гибкости. Удобные для биологов процедуры являются преимуществом и позволяют легко и надежно настраивать настройки лазера и детектора.
Кроме того, поскольку эксперименты FRET в живых клетках зависят от изменчивости экспрессии белка и соотношения донор-акцептор, для оценки данных необходимо учитывать уровни экспрессии белка. Здесь описан простой протокол для надежных и воспроизводимых измерений FRET, включая процедуры оценки экспрессии белка и регулировки интенсивности лазера и настроек детектора. Оценка данных будет проводиться путем калибровки с флуорофорным слиянием известной эффективности FRET. Для повышения простоты сравнивались поправочные коэффициенты, полученные в клетках и путем измерения рекомбинантных флуоресцентных белков.
Резонансный перенос энергии Фёрстера ((F)RET) обычно наблюдается с помощью флуоресцентной спектроскопии, хотя сам процесс не ограничивается происходящим между флуорофорами. Лежащая в основе диполь-дипольная связь просто требует светоизлучающей донорской молекулы и светопоглощающего акцептора. Это получено из требуемого спектрального перекрытия интеграла J нормализованных спектров излучения донора и акцепторного поглощения1. Однако, поскольку RET конкурирует с флуоресценцией, передача энергии становится измеримой за счет изменений в флуоресцентном излучении: RET вызывает закалку донора и сенсибилизированную акцепторную эмиссию.
RET на основе флуорофора был назван флуоресцентным резонансным переносом энергии (FRET), чтобы отделить его от биолюминесцентного резонансного переноса энергии (BRET). RET сильно зависит от расстояния между донором и акцептором, которое широко находится в диапазоне 0,5-10 нм2 и, таким образом, в том же диапазоне, что и размеры белков и их комплексов. Во-вторых, RET зависит от дипольно-дипольной ориентации каппа в квадрате. В сочетании с тем, что вращательной свободой связанных с белком флуорофоров можно пренебречь из-за молекулярной массы и медленной вращательной релаксации, RET позволяет анализировать конформационные изменения3.
Так называемый радиус Фёрстера основан на спектральном интеграле перекрытия и диапазоне длин волн перекрытия, так что красные хромофоры, поглощающие свет, приводят к более длинным радиусам Фёрстера, чем поглощающие синий свет красители. Поскольку динамический диапазон измерений FRET ограничен 0,5 × R0 и 1,5 × R0, пара FRET ECFP-EYFP имеет динамический диапазон 2,5-7,3 нм благодаря своему R0 4,9 нм4.
Яркость флуорофора задается произведением его коэффициента молярного вымирания и его квантового выхода. Для измерений FRET выгодно выбирать флуорофоры почти одинаковой яркости. Это улучшает обнаружение закалки доноров и сенсибилизированного акцепторного излучения. Это также способствует калибровке системы микроскопии. Глядя на часто используемые пары FRET синих и флуоресцентных белков, становится очевидной более низкая яркость синих флуоресцентных белков (рисунок 1A).
Однако срок службы акцептора должен быть ниже срока службы донора, обеспечивая доступность акцептора для передачи энергии. Если срок службы акцептора превышает срок службы донора, акцептор все еще может находиться в возбужденном состоянии, когда донор снова возбуждается. Усовершенствованные голубые флуоресцентные белки, такие как mTurquoise, показывают увеличенное время жизни и, таким образом, способствуют увеличению вероятности FRET (рисунок 1B). Вероятность FRET также зависит от коэффициента молярного вымирания акцептора.
ПРИМЕЧАНИЕ: Для следующего протокола была выполнена транзиторная трансфекция протопластов, как описано ранее12. Краткое описание приведено ниже.
1. Транзиторная трансфекция протопластов
2. Лазерная регулировка
ПРИМЕЧАНИЕ: Здесь 458 нм и 514 нм линии аргоно-ионного лазера были применены для анализа FRET между улучшенным голубым флуоресцентным белком (ECFP) и улучшенным желтым флуоресцентным белком (EYFP), меченым белками. Для воспроизводимого сбора данных обе линии были скорректированы на одинаковую интенсивность. Это было достигнуто либо с помощью фотоумножителя передачи, либо с помощью режима отражения.
3. Регулировка фотоумножителей
ПРИМЕЧАНИЕ: После лазерной регулировки фотоумножители были настроены на индивидуальные усиления для получения аналогичной чувствительности. Эта калибровка была выполнена с помощью лазерной линии 514 нм, которая находится в центре интересующего диапазона длин волн.
4. Получение изображения FRET
ПРИМЕЧАНИЕ: Начните с примера, представляющего интерес для настройки получения изображений.
5. Определение перекрестных коллизионных исправлений
ПРИМЕЧАНИЕ: Клетки, экспрессирующие только донора или акцептор, должны определять спектральное кровотечение донора (DSBT) и акцепторное спектральное кровотечение (ASBT), соответственно. Сохраните те же параметры, которые описаны в разделе 4.
6. Калибровка измерений по Beemiller et al.13
ПРИМЕЧАНИЕ: Требуются клетки, экспрессирующие донорско-акцепторное слияние известной эффективности FRET. Здесь использован ECFP-5 aa-EYFP-fusion с КПД FRET 0,464. Сохраните те же параметры, которые описаны в разделе 4.
7. Оценка данных
Настройка конфокального лазерно-сканирующего микроскопа
Лазерная регулировка выявила линейное увеличение излучения с увеличением интенсивности лазера (рис. 2 и табл. 1). Как и ожидалось для аргон-ионных лазеров, излучение линии 514 нм было намного выш?...
Закалка донором и сенсибилизированная акцепторная эмиссия характеризуются линейной зависимостью, которая позволяет проводить расчет FRET на основе донора или акцептора. Соответствующие факторы линейности называются либо G-фактором (донор к акцептору), либо xi (акцептор к донору), которы?...
Мы гарантируем, что все авторы раскрыли все конфликты интересов и не имеют конкурирующих финансовых интересов.
Эксперименты проводились на технологической платформе световой микроскопии (LiMiTec) биологического факультета Билефельдского университета. Эта работа была профинансирована Билефельдским университетом.
Name | Company | Catalog Number | Comments |
8-well slides | Ibidi | 80821 | |
Immersion oil Immersol W2010 | Zeiss | 444969-0000-000 | refraction index of water |
LSM 1: AxioObserver with LSM 780 scan head, confocal laser scanning microscope | Zeiss | ||
LSM 2: AxioObserver with LSM 5 scan head, confocal laser scanning microscope | Zeiss |
Запросить разрешение на использование текста или рисунков этого JoVE статьи
Запросить разрешениеThis article has been published
Video Coming Soon
Авторские права © 2025 MyJoVE Corporation. Все права защищены