Для просмотра этого контента требуется подписка на Jove Войдите в систему или начните бесплатную пробную версию.
Method Article
* Эти авторы внесли равный вклад
Скелетные мышцы состоят из нескольких типов клеток, включая резидентные стволовые клетки, каждый из которых вносит особый вклад в гомеостаз и регенерацию мышц. Здесь описывается 2D-культура мышечных стволовых клеток и ниша мышечных клеток в условиях ex vivo, которая сохраняет многие физиологические, in vivo и экологические характеристики.
Скелетные мышцы являются самой большой тканью тела и выполняют множество функций, от передвижения до контроля температуры тела. Его функциональность и восстановление после травм зависят от множества типов клеток и от молекулярных сигналов между основными мышечными клетками (миоволокнами, мышечными стволовыми клетками) и их нишей. Большинство экспериментальных установок не сохраняют это сложное физиологическое микроокружение, а также не позволяют исследовать ex vivo мышечные стволовые клетки в состоянии покоя, которое имеет для них решающее значение. Здесь изложен протокол культивирования ex vivo мышечных стволовых клеток с клеточными компонентами их ниши. Путем механического и ферментативного расщепления мышц получается смесь типов клеток, которая помещается в 2D-культуру. Иммуноокрашивание показывает, что в течение 1 недели в культуре присутствуют несколько нишевых клеток наряду с миоволокнами и, что важно, Pax7-положительными клетками, которые проявляют характеристики спящих мышечных стволовых клеток. Эти уникальные свойства делают этот протокол мощным инструментом для клеточной амплификации и получения покоящихся стволовых клеток, которые могут быть использованы для решения фундаментальных и трансляционных вопросов.
Движение, дыхание, обмен веществ, положение тела и поддержание температуры тела зависят от скелетной мускулатуры, и сбои в работе скелетных мышц могут, таким образом, вызывать изнурительные патологии (например, миопатии, мышечные дистрофии и т. д.). 1. Благодаря своим основным функциям и изобилию, скелетные мышцы привлекли внимание исследовательских лабораторий по всему миру, которые стремятся понять ключевые аспекты, поддерживающие нормальную работу мышц и служащие терапевтическими мишенями. Кроме того, скелетные мышцы являются широко используемой моделью для изучения регенерации и функции стволовых клеток, поскольку здоровые мышцы могут полностью самовосстанавливаться после полной травмы и дегенерации, в основном благодаря своим резидентным стволовым клеткам2; Они также называются сателлитными клетками и локализуются под базальной пластинкой на периферии мышечных волокон3.
Основными клетками скелетной мускулатуры взрослого человека являются миоволокна (длинные синцитиальные многоядерные клетки) и клетки-сателлиты (стволовые клетки с миогенным потенциалом, которые находятся в состоянии покоя до тех пор, пока травма не активирует их). Последние клетки являются центральными клетками мышечной регенерации, и этот процесс не может происходить при их отсутствии 4,5,6,7. В их непосредственном микроокружении есть несколько типов клеток и молекулярных факторов, которые сигнализируют о них. Эта ниша постепенно закрепляется на протяжении всего развития и до совершеннолетия8. Мышцы взрослого человека содержат несколько типов клеток (эндотелиальные клетки, перициты, макрофаги, фибро-адипогенные предшественники-FAP, регуляторные Т-клетки и т.д.). 9,10 и компоненты внеклеточного матрикса (ламинины, коллагены, фибронектин, фибриллины, периостин и др.) 11, которые взаимодействуют друг с другом и с клетками-сателлитами в контексте здоровья, болезни и регенерации.
Сохранение этой сложной ниши в экспериментальных условиях является фундаментальным, но сложным делом. Не менее трудно поддерживать или возвращаться в состояние покоя, которое имеет решающее значение для клеток-сателлитов9. Для частичного решения этих проблем было введено несколько методов, каждый из которых имеет свои преимущества и недостатки (подробно описаны в разделе обсуждения). Здесь представлен метод, позволяющий частично преодолеть эти два барьера. Мышцы сначала собираются, а затем разрушаются механически и ферментативно, прежде чем гетерогенная клеточная смесь будет помещена в культуру. В ходе культивирования обнаруживаются многие типы клеток ниши, а также наблюдаются клетки-сателлиты, вернувшиеся в состояние покоя. В качестве последнего шага протокола представлены этапы иммунофлюоресценции, которые позволяют обнаружить каждый тип клеток с помощью общепринятых маркеров.
Access restricted. Please log in or start a trial to view this content.
Все эксперименты проводились в соответствии с французскими и европейскими нормами в отношении животных в Институте биологических исследований (INSERM U955), в частности, директивой 2010/63/UE. Животные содержались в контролируемой и обогащенной среде на животноводческих объектах с номерами сертификатов А94 028 379 и Д94-028-028; С ними работали только уполномоченные исследователи и смотрители за животными, и они визуально осматривались персоналом содержания животных на предмет признаков дискомфорта в течение их жизни. Они были усыплены вывихом шейки матки перед вскрытием. В течение жизни животных не проводилось никаких интервенционных процедур; Таким образом, не было необходимости получать одобрение на эту процедуру от Комитета по этике и Министерства высшего образования, исследований и инноваций Франции. Действительно, в соответствии с директивой 2010/63/UE, для эвтаназии и вскрытия не требуется никакого этического разрешения. Результаты, представленные в этой рукописи, относятся к линии C57BL/6NRj дикого типа (см. таблицу материалов) и трансгенной линии Tg:Pax7-nGFP 12 (выведенной нашей командой). Протокол применялся к самцам и самкам мышей в возрасте 8-12 недель.
1. Подготовка реагентов и оборудования к предварительному сбраживанию
2. Подготовка реагентов и оборудования после разложения
3. Вскрытие
Рисунок 1: Подготовка мышц перед культурой. (А) Кожа снимается, чтобы обнажить мышцы задних конечностей, как описано в шаге 3.1. (В,В) Все мышцы задних конечностей собираются (В) вокруг костей и (С) между костями, как описано в шаге 3.2. (D) Собранные мышцы помещают в 10-сантиметровую чашку Петри на лед с каплями DMEM, чтобы они оставались влажными, как описано в шаге 3.3. (E) Мышцы мелко нарезаются ножницами до получения однородной пасты с консистенцией, изображенной на этом изображении. (F) Изображение гранулы после окончательного центрифугирования; Синяя стрелка выделяет дробинку, которая находится напротив трубки, под пунктирной синей линией. Пожалуйста, нажмите здесь, чтобы увидеть увеличенную версию этого рисунка.
4. Пищеварение
ПРИМЕЧАНИЕ: В конце сбраживания для секции 5 необходима центрифуга при температуре 4 °C, ведро льда, три ситечка для клеток (100 мкм, 70 мкм, 40 мкм) и три пробирки по 50 мл (на животное).
5. Фильтрация
6. (Необязательно) Замораживание
ПРИМЕЧАНИЕ: Раздел 6 не является обязательным. Протокол может быть приостановлен после фильтрации, но это может снизить выживаемость клеток и успешность культивирования.
7. Культивирование
ПРИМЕЧАНИЕ: Можно ожидать, что замороженные или свежие клеточные суспензии заполнят 24-32 лунки из трех-четырех 8-луночных планшетов.
8. Фиксация
ПРИМЕЧАНИЕ: Разделы 8-10 следует проводить при комнатной температуре, если не указано иное.
9. Проницаемость и блокировка
10. Окрашивание
Access restricted. Please log in or start a trial to view this content.
Этот протокол позволяет культивировать мышечные клетки, сохраняя при этом клетки-сателлиты и большинство клеток из их эндогенной ниши. На рисунке 2 обобщены основные этапы протокола, в то время как основные части вскрытия и пищеварения представлены на рисунке 1.
Access restricted. Please log in or start a trial to view this content.
Функция скелетных мышц взрослого человека подкрепляется тонко организованным набором клеточных взаимодействий и молекулярных сигналов. Здесь представлен метод, позволяющий изучать эти параметры в условиях ex vivo , близком к физиологическому микроокружению.
Нескол?...
Access restricted. Please log in or start a trial to view this content.
Авторы заявляют об отсутствии конфликта интересов.
Для рисунка 2 были использованы шаблоны Servier Medical Art (https://smart.servier.com/). Лаборатория FR поддерживается Французской ассоциацией по борьбе с миопатиями - AFM через TRANSLAMUSCLE (гранты 19507 и 22946), Фондом медицинских исследований - FRM (EQU202003010217, ENV202004011730, ECO201806006793), Национальным агентством исследований - ANR (ANR-21-CE13-0006-02, ANR-19-CE13-0010, ANR-10-LABX-73) и Высшей лигой по борьбе с раком (IP/SC-17130). Вышеупомянутые спонсоры не играли никакой роли в разработке, сборе, анализе, интерпретации или представлении информации об этом исследовании или написании этой рукописи.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
anti-CD31 | BD | 550274 | dilution 1:100 |
anti-FOSB | Santa Cruz | sc-7203 | dilution 1:200 |
anti-GFP | Abcam | ab13970 | dilution 1:1000 |
anti-Ki67 | Abcam | ab16667 | dilution 1:1000 |
anti-MyHC | DSHB | MF20-c | dilution 1:400 |
anti-MYOD | Active Motif | 39991 | dilution 1:200 |
anti-MYOG | Santa Cruz | sc-576 | dilution 1:150 |
anti-Pax7 | Santa Cruz | sc-81648 | dilution 1:100 |
anti-PDGFRα | Invitrogen | PA5-16571 | dilution 1:50 |
b-FGF | Peprotech | 450-33 | concentration 4 ng/mL |
Bovine serum albumin (BSA) – used for digestion | Sigma Aldrich | A7906-1006 | concentration 0.2% |
BSA IgG-free, protease-free – used for staining | Jackson ImmunoResearch | 001-000-162 | concentration 5% |
Cell strainer 40 um | Dominique Dutscher | 352340 | |
Cell strainer 70 um | Dominique Dutscher | 352350 | |
Cell strainer 100 um | Dominique Dutscher | 352360 | |
Collagenase | Roche | 10103586001 | concentration 0.5 U/mL |
Culture plate | Sarstedt | 94.6140.802 | |
Dimethyl sulfoxide (DMSO) | Euromedex | UD8050-05-A | |
Dispase | Roche | 4942078001 | concentration 3 U/mL |
Dissection forceps size 5 | Fine Science Tools | 91150-20 | |
Dissection forceps size 55 | Fine Science Tools | 11295-51 | |
Dissection scissors (big, straight) | Fine Science Tools | 9146-11 | ideal for chopping |
Dissection scissors (small, curved) | Fine Science Tools | 15017-10 | |
Dissection scissors (small, straight) | Fine Science Tools | 14084-08 | |
Dulbecco's Modified Eagle's Medium (DMEM) | ThermoFisher | 41966-029 | |
EdU Click-iT kit | ThermoFisher | C10340 | |
Fetal bovine serum – option 1 | Eurobio | CVF00-01 | |
Fetal bovine serum – option 2 | Gibco | 10270-106 | |
Matrigel | Corning Life Sciences | 354234 | coating solution |
Parafilm | Dominique Dutscher | 090261 | flexible film |
Paraformaldehyde – option 1 | PanReac AppliChem ITW Reagents | 211511.1209 | concentration 4% |
Paraformaldeyde – option 2 | ThermoFisher | 28908 | concentration 4% |
Penicillin streptomycin | Gibco | 15140-122 | |
Shaking water bath | ThermoFisher | TSSWB27 | |
TritonX100 | Sigma Aldrich | T8532-500 ML | concentration 0.5% |
Wild-type mice | Janvier | C57BL/6NRj |
Access restricted. Please log in or start a trial to view this content.
Запросить разрешение на использование текста или рисунков этого JoVE статьи
Запросить разрешениеThis article has been published
Video Coming Soon
Авторские права © 2025 MyJoVE Corporation. Все права защищены