Sign In

3.6 : Hydrolysis

Overview

Hydrolysis is a chemical reaction in which the addition of water breaks down a polymer into its simpler monomer units. For example, peptides break into amino acids, carbohydrates into simple sugars, and DNA into nucleotides. Enzymes often facilitate these processes.

Hydrolysis Reverses Dehydration Synthesis

Complex carbohydrates can be broken down by breaking the bonds between individual sugar units. The reaction breaks a glycosidic bond as water is added to the compound. The glycosidic bonds between sugar molecules are unstable and are susceptible to hydrolysis. Hydrolases are a class of enzymes that often catalyze hydrolysis.

Different types of glycosidic bonds (e.g., 1-4 linkage, 1-6 linkage) require different hydrolases. For instance, starch primarily consists of α-1-4 linked glucose, with a relatively small number of α-1-6 glycosidic bonds. While α-amylase can cleave α-1-4 glycosidic bonds in the middle of the polymer, the enzyme amyloglucosidase breaks only terminal α-1-6 or α-1-4 bonds (i.e., the last glucose units at the ends of the chain).

The Lack of Lactase Can Cause Gastrointestinal Symptoms

Human babies produce the enzyme lactase, which catalyzes the hydrolysis of milk sugar (lactose) - a disaccharide made up of glucose and galactose. As people age, the production of lactase decreases, leading to lactose intolerance. In some cases, the body may fail to produce lactase due to a genetic disorder. In the absence of lactase, lactose directly passes into the colon through the intestine without breaking down into its monomers. Colonic bacteria can metabolize lactose and release gas as a byproduct, resulting in water influx, bloating flatulence, and even diarrhea. These symptoms can be mitigated by either taking lactase supplements or removing dairy from the diet altogether.

Tags
HydrolysisWaterBondsDehydration SynthesisStarchAmyloseGlucoseMonomersPolymerRepurposedPeptidesAmino AcidsCarbohydratesSimple SugarsDNANucleotidesEnzymesGlycosidic BondHydrolases

From Chapter 3:

article

Now Playing

3.6 : Hydrolysis

Macromolecules

98.9K Views

article

3.1 : What are Proteins?

Macromolecules

187.9K Views

article

3.2 : Protein Organization

Macromolecules

129.0K Views

article

3.3 : Protein Folding

Macromolecules

111.0K Views

article

3.4 : What are Carbohydrates?

Macromolecules

151.2K Views

article

3.5 : Dehydration Synthesis

Macromolecules

125.5K Views

article

3.7 : What are Lipids?

Macromolecules

178.2K Views

article

3.8 : Nucleic acids

Macromolecules

143.9K Views

article

3.9 : Phosphodiester Linkages

Macromolecules

92.7K Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved