Anmelden

The Arrhenius equation relates the activation energy and the rate constant, k, for chemical reactions. In the Arrhenius equation, k = Ae−Ea/RT, R is the ideal gas constant, which has a value of 8.314 J/mol·K, T is the temperature on the kelvin scale, Ea is the activation energy in J/mole, e is the constant 2.7183, and A is a constant called the frequency factor, which is related to the frequency of collisions and the orientation of the reacting molecules.

The Arrhenius equation can be used to compute the activation energy of a reaction from experimental kinetic data. A convenient approach to determining the Ea for a reaction involves the measurement of k at two or more different temperatures. It uses a modified version of the Arrhenius equation that takes the form of a linear equation:

Eq1

A plot of the ln k versus 1/T is linear with a slope equal to −Ea/R and y-intercept equal to ln A.

Consider the following reaction:

Eq2

The activation energy of this reaction can be determined if the variation in the rate constant with temperature is known from the reaction kinetic data, as shown.

Temperature (K) Rate constant (L/mol/s)
555 3.52 × 10–7
575 1.22 × 10–6
645 8.59 × 10–5
700 1.16 × 10–3
781 3.95× 10–2

The provided data can be used to derive the values of the inverse of temperature (1/T) and the natural log of k (ln k).

1/T (K–1) ln k
1.80 × 10–3 –14.860
1.74 × 10–3 –13.617
1.55 × 10–3 –9.362
1.43 × 10–3 –6.759
1.28 × 10–3 –3.231

Image1

On plotting the derived data points with ln k versus 1/T, a line-graph exhibiting a linear relationship between ln k and 1/T is generated, as shown.

The slope of the line, which corresponds to the activation energy, can be estimated using any two of the experimental data pairs.

Eq3

An alternative approach in deriving activation energy involves the utilization of the rate constant at two different temperatures. In this approach, the Arrhenius equation is rearranged to a convenient two-point form:

Eq4

On rearranging the equation, an expression for the activation energy is generated.

Eq5

By substituting any two data pairs and further calculation yields the value for the activation energy in joules per mole or kilojoules per mole.

Eq6

This alternative two-point approach yields the same result as the graphical approach. However, in practice, the graphical approach typically provides more reliable results while working with actual experimental data.

This text is adapted from Openstax, Chemistry 2e, Section 12.5: Collision Theory.

Tags

Arrhenius PlotsChemical Reaction RateTemperature DependenceArrhenius EquationRate ConstantAbsolute TemperatureFrequency FactorActivation EnergyNon exponential FormLinear FunctionSlope ValueY interceptNatural LogarithmArrhenius PlotInverse Of TemperatureKinetic DataExperimentsReactionsStraight LineGas ConstantKelvinActivation Energy ValueFrequency Factor Value

Aus Kapitel 13:

article

Now Playing

13.8 : Arrhenius Plots

Chemische Kinetik

37.0K Ansichten

article

13.1 : Reaktionsgeschwindigkeit

Chemische Kinetik

49.6K Ansichten

article

13.2 : Messung von Reaktionsgeschwindigkeiten

Chemische Kinetik

23.6K Ansichten

article

13.3 : Konzentrations- und Ratengesetz

Chemische Kinetik

29.0K Ansichten

article

13.4 : Bestimmung der Reaktionsreihenfolge

Chemische Kinetik

53.9K Ansichten

article

13.5 : Das integrierte Tarifgesetz: Die Abhängigkeit der Konzentration von der Zeit

Chemische Kinetik

33.3K Ansichten

article

13.6 : Halbwertszeit einer Reaktion

Chemische Kinetik

33.3K Ansichten

article

13.7 : Temperaturabhängigkeit von der Reaktionsgeschwindigkeit

Chemische Kinetik

80.1K Ansichten

article

13.9 : Reaktionsmechanismen

Chemische Kinetik

24.5K Ansichten

article

13.10 : Schritte zur Ratenbestimmung

Chemische Kinetik

30.9K Ansichten

article

13.11 : Katalyse

Chemische Kinetik

26.0K Ansichten

article

13.12 : Enzyme

Chemische Kinetik

79.7K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten