Sign In

In order to be passed through generations, genomic DNA must be undamaged and error-free. However, every day, DNA in a cell undergoes several thousand to a million damaging events by natural causes and external factors. Ionizing radiation such as UV rays, free radicals produced during cellular respiration, and hydrolytic damage from metabolic reactions can alter the structure of DNA. Damages caused include single-base alteration, base dimerization, chain breaks, and cross-linkage.

Chemically modified genomic DNA can cause errors during transcription and translation into proteins. If the damaged DNA is not repaired before cell division, the genomic mutations can be transferred to the next generations of cells. Some of these mutations can lead to uncontrolled cell growth that develops into cancer.

The cell has developed robust systems to detect and repair DNA damage. DNA damage can be repaired by enzymes that can directly reverse the chemical change in a single reaction. For example, enzyme photolyase uses UV radiation to split thymine dimers by opening the cyclobutane moiety that holds the thymine dimer together.

Other forms of repair follow a multi-step process in which

  1. Chemical modifications in the DNA are detected
  2. Damaged base or region is removed
  3. New DNA is synthesized

If the damage is beyond repair, the cell can either become senescent or undergo apoptosis. Senescence is a state in which the cell becomes irreversibly dormant, i.e., it can no longer undergo cell division, and its cell cycle is halted indefinitely. Apoptosis refers to programmed cell death, where proteins called caspases degrade the cellular components required for cell survival. This is followed by the digestion of DNA by DNases, which causes the cell to shrink in size and transmit signals to a group of white blood cells called macrophages, which engulf and remove cellular debris.

Tags
DNA RepairGenetic InformationStable DNAOrganic Molecule ChangesHeat DamageRadiation DamageOxidation DamageHydrolytic DamageDeaminationDepurinationRandom MutationsGenome InstabilityCell DeathCancersDNA ReplicationRepair MechanismsDouble stranded DNA StructureTemplate RestorationNucleotide Sequence

From Chapter 7:

article

Now Playing

7.1 : Overview of DNA Repair

DNA Repair and Recombination

24.5K Views

article

7.2 : Base Excision Repair

DNA Repair and Recombination

19.6K Views

article

7.3 : Long-patch Base Excision Repair

DNA Repair and Recombination

6.7K Views

article

7.4 : Nucleotide Excision Repair

DNA Repair and Recombination

10.5K Views

article

7.5 : Translesion DNA Polymerases

DNA Repair and Recombination

9.2K Views

article

7.6 : Fixing Double-strand Breaks

DNA Repair and Recombination

11.2K Views

article

7.7 : DNA Damage can Stall the Cell Cycle

DNA Repair and Recombination

8.8K Views

article

7.8 : Homologous Recombination

DNA Repair and Recombination

48.6K Views

article

7.9 : Restarting Stalled Replication Forks

DNA Repair and Recombination

5.5K Views

article

7.10 : Gene Conversion

DNA Repair and Recombination

9.3K Views

article

7.11 : Overview of Transposition and Recombination

DNA Repair and Recombination

13.2K Views

article

7.12 : DNA-only Transposons

DNA Repair and Recombination

13.6K Views

article

7.13 : Retroviruses

DNA Repair and Recombination

10.7K Views

article

7.14 : LTR Retrotransposons

DNA Repair and Recombination

16.8K Views

article

7.15 : Non-LTR Retrotransposons

DNA Repair and Recombination

10.9K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved