Sign In

Polar Covalent Bonds

Covalent bonds are formed between two atoms when both have similar tendencies to attract electrons to themselves (i.e., when both atoms have identical or fairly similar ionization energies and electron affinities). Nonmetal atoms frequently form covalent bonds with other nonmetal atoms. For example, the hydrogen molecule, H2, contains a covalent bond between its two hydrogen atoms. When two separate hydrogen atoms with a particular potential energy approach each other, their valence orbitals (1s) begin to overlap. The single electrons on each hydrogen atom then interact with both atomic nuclei, occupying the space around both atoms. The strong attraction of each shared electron to both nuclei stabilizes the system, and the potential energy decreases as the bond distance decreases. If the atoms continue to approach each other, the positive charges in the two nuclei begin to repel each other, and the potential energy increases. The bond length is determined by the distance at which the lowest potential energy is achieved. Whether a bond is nonpolar or polar covalent is determined by a property of the bonding atoms called electronegativity.

Electronegativity values of the elements were proposed by one of the most famous chemists of the twentieth century: Linus Pauling. Electronegativity is a measure of the tendency of an atom to attract electrons (or electron density) towards itself. Electronegativity determines how the shared electrons are distributed between the two atoms in a bond. The more strongly an atom attracts the electrons in its bonds, the larger its electronegativity. It describes how tightly an atom attracts electrons in a bond. It is a dimensionless quantity that is calculated, not measured. Pauling derived the first electronegativity values by comparing the amounts of energy required to break different types of bonds. Electrons in a polar covalent bond are shifted toward the more electronegative atom; thus, the more electronegative atom is the one with the partial negative charge. The greater the difference in electronegativity, the more polarized the electron distribution and the larger the partial charges of the atoms.

Tags
Polar Covalent BondsCovalent BondsAtomsElectron AttractionIonization EnergiesElectron AffinitiesNonmetal AtomsHydrogen MoleculeValence OrbitalsPotential EnergyBond DistanceElectronegativityLinus PaulingShared Electrons

From Chapter undefined:

article

Now Playing

Polar Covalent Bonds

Related Videos

14.0K Views

article

What is Organic Chemistry?

Related Videos

50.6K Views

article

Electronic Structure of Atoms

Related Videos

18.1K Views

article

Electron Configurations

Related Videos

12.9K Views

article

Chemical Bonds

Related Videos

11.9K Views

article

Lewis Structures and Formal Charges

Related Videos

10.4K Views

article

VSEPR Theory

Related Videos

7.2K Views

article

Molecular Geometry and Dipole Moments

Related Videos

10.2K Views

article

Resonance and Hybrid Structures

Related Videos

13.1K Views

article

Valence Bond Theory and Hybridized Orbitals

Related Videos

14.9K Views

article

MO Theory and Covalent Bonding

Related Videos

8.7K Views

article

Intermolecular Forces and Physical Properties

Related Videos

17.9K Views

article

Solubility

Related Videos

13.4K Views

article

Introduction to Functional Groups

Related Videos

21.3K Views

article

Overview of Advanced Functional Groups

Related Videos

19.3K Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved