According to the theory of resonance, if two or more Lewis structures with the same arrangement of atoms can be written for a molecule, ion, or radical, the actual distribution of electrons is an average of that shown by the various Lewis structures.
Resonance Structures and Resonance Hybrids
The Lewis structure of a nitrite anion (NO2−) may actually be drawn in two different ways, distinguished by the locations of the N–O and N=O bonds.
If nitrite ionscontain a single and a double bond, the two bond lengths are expected to be different. A double bond between two atoms is shorter (and stronger) than a single bond between the same two atoms. However, experiments show that both N–O bonds in NO2− have the same strength and length, and are identical in all other properties. It is not possible to write a single Lewis structure for NO2− in which nitrogen has an octet, and both bonds are equivalent.
Instead, the concept of resonance is used: The actual distribution of electrons in each of the nitrogen–oxygen bonds in NO2− is the average of a double bond and a single bond.
The individual Lewis structures are called resonance structures. The actual electronic structure of the molecule (the average of the resonance forms) is called a resonance hybrid of the individual resonance forms. A double-headed arrow between Lewis structures indicates that they are resonance forms.
The carbonate anion, CO32−, provides a second example of resonance.
A molecule described as a resonance hybrid never possesses an electronic structure described by either resonance form. It does not fluctuate between resonance forms; rather, the actual electronic structure is always the average of that shown by all resonance forms.
This text is adapted fromOpenstax, Chemistry 2e, Chapter 7.4 Formal Charges and Resonance.
From Chapter undefined:
Now Playing
Related Videos
13.1K Views
Related Videos
50.6K Views
Related Videos
18.1K Views
Related Videos
12.9K Views
Related Videos
11.9K Views
Related Videos
14.0K Views
Related Videos
10.4K Views
Related Videos
7.2K Views
Related Videos
10.2K Views
Related Videos
14.9K Views
Related Videos
8.7K Views
Related Videos
17.9K Views
Related Videos
13.4K Views
Related Videos
21.3K Views
Related Videos
19.3K Views
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved