Sign In

8.18 : ¹H NMR: Complex Splitting

A proton M that is coupled to a proton X results in doublet signals for M. However, NMR-active nuclei can be simultaneously coupled to more than one nonequivalent nucleus. When M is coupled to a second proton A, such as in styrene oxide, each peak in the doublet is split into another doublet.

Splitting diagrams or splitting tree diagrams are routinely used to depict such complex couplings. While drawing splitting diagrams, the splitting with the larger coupling constant is usually applied first. However, the splittings can be applied in any order, and the same result is obtained.

In propyl bromide, the protons M are coupled to three methyl and two methylene protons, with the coupling constants JAM and JMX. The splitting diagram predicts a quartet of triplets with 12 lines, which would all be visible in the spectrum if JAM >> JMX. However, if JAM ≅ 2 JMX, some peaks overlap, their intensities are added, and 9 peaks are seen. When JAMJMX, as is the case in propyl bromide, 6 peaks are observed. As a result, the relative magnitudes of the J values can cause deviations from the number of peaks and relative intensities predicted by the n+1 rule and Pascal's triangle.

Tags
1H NMRComplex SplittingDoubletCouplingNonequivalent NucleusStyrene OxideSplitting DiagramSplitting Tree DiagramCoupling ConstantPropyl BromideQuartet Of TripletsPascal s Triangle

From Chapter 8:

article

Now Playing

8.18 : ¹H NMR: Complex Splitting

Interpreting Nuclear Magnetic Resonance Spectra

1.0K Views

article

8.1 : Chemical Shift: Internal References and Solvent Effects

Interpreting Nuclear Magnetic Resonance Spectra

394 Views

article

8.2 : NMR Spectroscopy: Chemical Shift Overview

Interpreting Nuclear Magnetic Resonance Spectra

844 Views

article

8.3 : Proton (¹H) NMR: Chemical Shift

Interpreting Nuclear Magnetic Resonance Spectra

1.1K Views

article

8.4 : Inductive Effects on Chemical Shift: Overview

Interpreting Nuclear Magnetic Resonance Spectra

766 Views

article

8.5 : π Electron Effects on Chemical Shift: Overview

Interpreting Nuclear Magnetic Resonance Spectra

884 Views

article

8.6 : π Electron Effects on Chemical Shift: Aromatic and Antiaromatic Compounds

Interpreting Nuclear Magnetic Resonance Spectra

1.0K Views

article

8.7 : ¹H NMR Chemical Shift Equivalence: Homotopic and Heterotopic Protons

Interpreting Nuclear Magnetic Resonance Spectra

2.0K Views

article

8.8 : ¹H NMR Chemical Shift Equivalence: Enantiotopic and Diastereotopic Protons

Interpreting Nuclear Magnetic Resonance Spectra

1.2K Views

article

8.9 : ¹H NMR Signal Integration: Overview

Interpreting Nuclear Magnetic Resonance Spectra

1.0K Views

article

8.10 : NMR Spectroscopy: Spin–Spin Coupling

Interpreting Nuclear Magnetic Resonance Spectra

972 Views

article

8.11 : ¹H NMR Signal Multiplicity: Splitting Patterns

Interpreting Nuclear Magnetic Resonance Spectra

2.8K Views

article

8.12 : Interpreting &sup1;H NMR Signal Splitting: The (<em>n</em> + 1) Rule

Interpreting Nuclear Magnetic Resonance Spectra

954 Views

article

8.13 : Spin&ndash;Spin Coupling Constant: Overview

Interpreting Nuclear Magnetic Resonance Spectra

742 Views

article

8.14 : Spin&ndash;Spin Coupling: One-Bond Coupling

Interpreting Nuclear Magnetic Resonance Spectra

825 Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved