Esters are reduced to primary alcohols when treated with a strong reducing agent like lithium aluminum hydride. The reaction requires two equivalents of the reducing agent and proceeds via an aldehyde intermediate.
Lithium aluminum hydride is a source of hydride ions and functions as a nucleophile. The mechanism proceeds in three steps. Firstly, the nucleophilic hydride ion attacks the carbonyl carbon of the ester to form a tetrahedral intermediate. Subsequently, the carbonyl group re-forms, and the alkoxideion departs as the leaving group, generating an aldehyde. Lastly, a second nucleophilic attack by the hydride ion at the carbonyl carbon of the aldehyde yields an alkoxide ion, which gives a primary alcohol as the final product upon protonation.
However, in casethe desired product is an aldehyde, it is possible to stop the reaction at the aldehyde intermediate by using a milder reducing agent like diisobutylaluminum hydride or lithium tri(t-butoxy) aluminum hydride,at a lower temperature.
From Chapter 14:
Now Playing
Carboxylic Acid Derivatives
2.9K Views
Carboxylic Acid Derivatives
2.8K Views
Carboxylic Acid Derivatives
3.3K Views
Carboxylic Acid Derivatives
2.7K Views
Carboxylic Acid Derivatives
2.1K Views
Carboxylic Acid Derivatives
2.2K Views
Carboxylic Acid Derivatives
3.0K Views
Carboxylic Acid Derivatives
2.1K Views
Carboxylic Acid Derivatives
2.3K Views
Carboxylic Acid Derivatives
2.4K Views
Carboxylic Acid Derivatives
2.3K Views
Carboxylic Acid Derivatives
2.4K Views
Carboxylic Acid Derivatives
2.3K Views
Carboxylic Acid Derivatives
2.4K Views
Carboxylic Acid Derivatives
1.9K Views
See More
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved