JoVE Logo
Faculty Resource Center

Sign In

Esters are reduced to primary alcohols when treated with a strong reducing agent like lithium aluminum hydride. The reaction requires two equivalents of the reducing agent and proceeds via an aldehyde intermediate.

Lithium aluminum hydride is a source of hydride ions and functions as a nucleophile. The mechanism proceeds in three steps. Firstly, the nucleophilic hydride ion attacks the carbonyl carbon of the ester to form a tetrahedral intermediate. Subsequently, the carbonyl group re-forms, and the alkoxideion departs as the leaving group, generating an aldehyde. Lastly, a second nucleophilic attack by the hydride ion at the carbonyl carbon of the aldehyde yields an alkoxide ion, which gives a primary alcohol as the final product upon protonation.

Figure1

However, in casethe desired product is an aldehyde, it is possible to stop the reaction at the aldehyde intermediate by using a milder reducing agent like diisobutylaluminum hydride or lithium tri(t-butoxy) aluminum hydride,at a lower temperature.

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved