Sign In

9.10 : Elastic Collisions: Case Study

Elastic collision of a system demands conservation of both momentum and kinetic energy. To solve problems involving one-dimensional elastic collisions between two objects, the equations for conservation of momentum and conservation of internal kinetic energy can be used. For the two objects, the sum of momentum before the collision equals the total momentum after the collision. An elastic collision conserves internal kinetic energy, and so the sum of kinetic energies before the collision equals the sum after the collision. We can understand this better with the help of a problem.

Let’s try to calculate the velocities of two objects following an elastic collision, given that mA = 0.50 kg, mB = 3.5 kg, vA1x = 4.0 m/s, and vB1x = 0 m/s.

The initial conditions imply that a small object strikes a larger object that is initially at rest. There are two unknowns (the final velocities vA2x and vB2x), which should be found. Because this collision is elastic, the equations for conservation of momentum and conservation of energy can be used. They are given by,

Equation1

Equation2

Both can be simplified because object B is initially at rest, and thus vB1x = 0 m/s.

Equation3

Equation4

Substituting the known values into these equations, we obtain vA2x = -3 m/s and vB2x= 4 m/s. The negative sign indicates that the first object bounces backward. The result of this example is reasonably intuitive: a small object strikes a larger one at rest and bounces backward. The larger one is knocked forward but with a low speed. This is like a compact car bouncing backward off a full-size SUV that is initially at rest.

This text is adapted from Openstax, University Physics Volume 1, Section 9.4: Types of Collisions.

Tags
Keyword Extraction Elastic CollisionConservation Of MomentumConservation Of Kinetic EnergyOne dimensional CollisionInitial ConditionsFinal VelocitiesRelative MotionCompact CarFull size SUV

From Chapter 9:

article

Now Playing

9.10 : Elastic Collisions: Case Study

Linear Momentum, Impulse and Collisions

4.9K Views

article

9.1 : Linear Momentum

Linear Momentum, Impulse and Collisions

11.3K Views

article

9.2 : Force and Momentum

Linear Momentum, Impulse and Collisions

6.5K Views

article

9.3 : Impulse

Linear Momentum, Impulse and Collisions

9.7K Views

article

9.4 : Impulse-Momentum Theorem

Linear Momentum, Impulse and Collisions

9.1K Views

article

9.5 : Conservation of Momentum: Introduction

Linear Momentum, Impulse and Collisions

12.5K Views

article

9.6 : Conservation of Momentum: Problem Solving

Linear Momentum, Impulse and Collisions

8.1K Views

article

9.7 : Types Of Collisions - I

Linear Momentum, Impulse and Collisions

5.2K Views

article

9.8 : Types of Collisions - II

Linear Momentum, Impulse and Collisions

5.5K Views

article

9.9 : Elastic Collisions: Introduction

Linear Momentum, Impulse and Collisions

4.4K Views

article

9.11 : Collisions in Multiple Dimensions: Introduction

Linear Momentum, Impulse and Collisions

3.0K Views

article

9.12 : Collisions in Multiple Dimensions: Problem Solving

Linear Momentum, Impulse and Collisions

3.0K Views

article

9.13 : Center of Mass: Introduction

Linear Momentum, Impulse and Collisions

5.7K Views

article

9.14 : Significance of Center of Mass

Linear Momentum, Impulse and Collisions

5.1K Views

article

9.15 : Gravitational Potential Energy for Extended Objects

Linear Momentum, Impulse and Collisions

1.1K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved